
Ion Exchange Resins

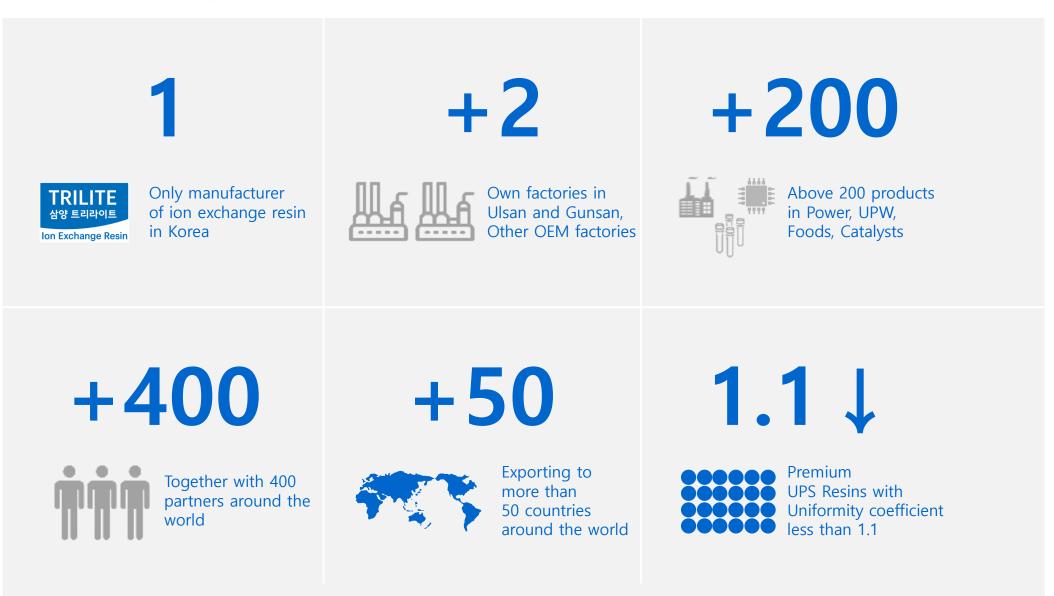
Samyang Corporation 31 Jongno 33-gil, Jongno-gu, Seoul TEL) 02-740-7732~7, FAX) 02-740-7790 E-mail) trilite@samyang.co.kr

Samyang Group Overview

TRILITE Water treatment Specialty Chemicals & Equipment

Samyang Corporation is the history of Ion Exchange Resins in Korea.

In 1976, Samyang Corporation successfully initiated localized production of IER in South Korea by technical cooperation with Mitsubishi Chemical Corporation, Japan.


In 2011, with successful development of UPW(Ultrapure Water) grade resins, we are contributing to enhancing national competitiveness in the semiconductor and the display industries.

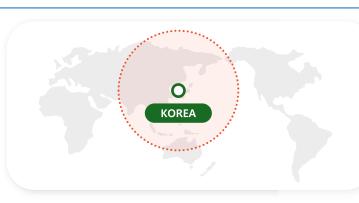
In 2016, Asia's largest UPS(Uniform Particle Sized) Specilaized IER(Ion Exchange Resin) plant: Samyang Fine Technology Corporation was founded. Premium grade TRILITE ion exchange resins are being supplied to the wide range of reputable global customers in Power plants, Electronics, Food ingredient industries.

TRILITE at a glance

Locations (Head Quarter, Plants, Tech-center)

> Technical sales force - Demineralization/Power plant/UPW/Catalyst - Food

- Wastewater/Chelating resin/Purification


One Stop Service

- Analysis of IER
- System design support (IER/EDI)
- Technical seminars / Trouble shooting

Samyang Fine Technology Corporation (Since 2016) > Largest production capacity in Asia > Product line

- Uniform particle sized resins, EDI resins - Ultrapure water grade resins(OLED, LCD) - Chromatography resins

DAEJEON (Technical Center) **O** GUNSAN

ULSAN O

> IER Tech-center

> Analysis of IER

- New product development

> Samyang Corp. Ulsan plant (Since 1976) Customized Tailored resin Production

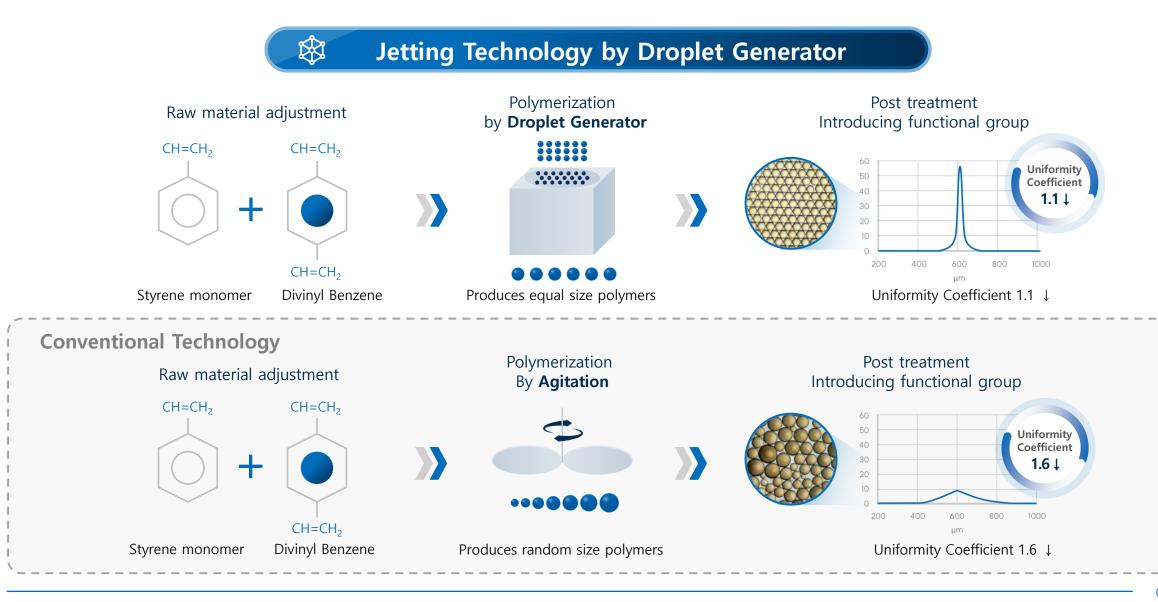
Product line

- Ultrapure water grade resins (semiconductors)
- Tailored resin (starch sugar, nucleic acid, catalyst, etc)
- Specialty resin(chelating resin, synthetic adsorbents, etc)

SEOUL(Headquarter)

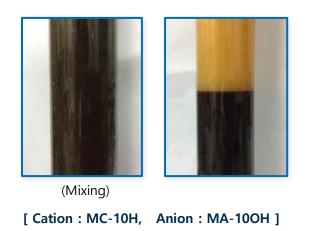
- (Tailored/Specialty)

Overview of Samyang Fine Technology Corp.

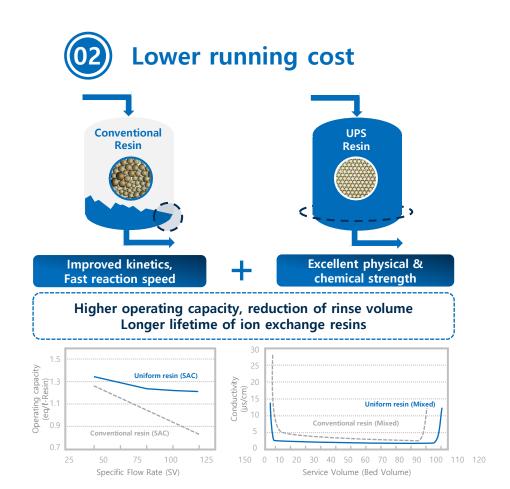


Commercial operation begun since 2016, it boasts the latest facilities and the largest production scale for UPS resin production in Asia. It is well received by customers for its strict quality control and delivery time compliance under the ISO9001 quality assurance system.

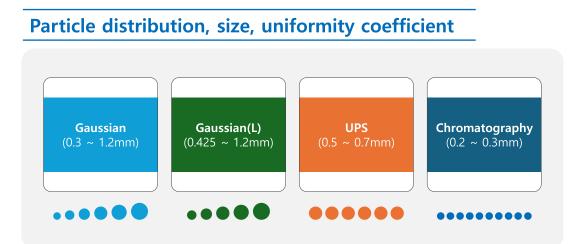
How to make Ion Exchange Resins?

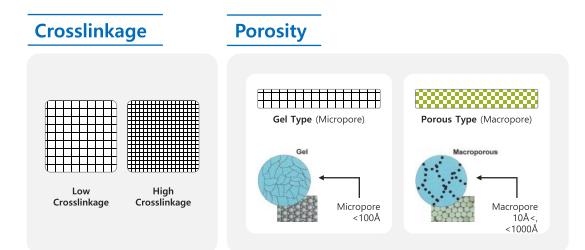


What is the advantage of TRILITE UPS Resins?

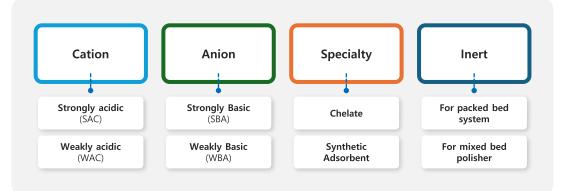


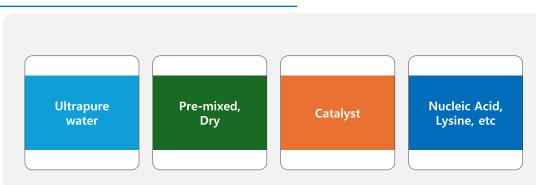
Physical Stability & Separability


- High separability of mixed bed resins by optimizing specific gravity and particle size distribution
- > Excellent physical stability
- > Outstanding osmotic strength



Next Generation IER, high performance low cost


How can lon exchange resins be classified?



Post-treatment / Tailored resin

What is lon exchange resisns Used for?

Water treatment	SofteningDemineralizationCondensate polishingNuclear power	Suga
Ready to use mixed	resins	
Ultrapure water		
Chelating resins	Secondary brine purificationWastewater treatment	Starch s ref
Chromatography	 Fructose/glucose separation) Amino acid separation) Acid purification) 	
Food	 Starch sugar refining Sugar refining Nucleic acid, lysine separation 	on
Catalyst	Synthetic adsorben	ts
Layered bed anion r	resins Inert resins	
EO/EG cycle water t	reatment Dry type rea	sins

Strongly acid cation resins (SAC) Strongly basic anion resins (SBA) Type Particle Particle TEC (eq/l) Grade TEC (eq/l) Type Grade distribution distribution MC-10S 2.2 ↑ 0.60~0.70mm MA-10S 1.35 ↑ 0.50~0.60mm Premium Type1 MC-10SH 2.0 ↑ 0.61~0.71mm MA-10SOH 1.1 ↑ 0.54~0.64mm MC-08 0.55~0.65mm MA-12 1.3 ↑ 0.53~0.63mm 2.0 ↑ MC-08H 1.8 ↑ 0.57~0.67mm MA-12OH 1.0 ↑ 0.57~0.67mm 0.60~0.70mm MA-10 MC-10 2.2 ↑ 1.35 ↑ 0.50~0.60mm Type1 MC-10H 2.0 ↑ 0.61~0.71mm MA-10OH 1.1 ↑ 0.54~0.64mm Performance UPS Gel MA-15 MC-14M 2.5 ↑ 1.4 ↑ 0.55~0.65mm 0.60~0.70mm MA-15OH 1.2 ↑ 0.58~0.68mm MC-14MH 2.4 ↑ Type2 MA-20 1.3 ↑ 0.53~0.63mm UKC-08 0.55~0.65mm Type1 UKA-12 1.3 ↑ 0.55~0.65mm 2.0 ↑ UKC-10 2.2 ↑ 0.60~0.70mm UKC-12 2.3 ↑ 0.60~0.70mm SAR10(MB) 1.3 ↑ 0.3~1.2mm Type1 0.3~1.2mm SAR12 1.3 ↑ (L-type) 0.425~1.2mm SCR-B(L) 2.0 ↑ (L-type) 0.425~1.2mm Basic (MB) for mixed bed SAR20(MB) 1.3 ↑ Type2 KC-07 KA-10(MB) 1.35 ↑ 1.9 ↑ Gaussian Gel Type1 0.3~1.2mm KH-70 1.9 ↑ KA-12 1.2 ↑ (MB) for mixed bed 0.3~1.2mm Type2 KA-20(MB) 1.3 ↑ KC-08 2.0 ↑ KH-80 2.0 ↑ Functional (Polystyrene+DVB) + (Polystyrene+DVB) + Sulfonate Group Type1 : TMA, trimethylamine, Type2 : DMEA, dimethylethanolamine Weakly acidic cation resin (WAC) Weakly basic anion resin (WBA) Type Premium AW90 1.6 ↑ 0.50~0.60mm UPS Gaussian Porous 0.425~1.2mm 0.40~0.60mm Performance WCA10L 4.5 ↑ AW80 1.5 ↑ Porous Gaussian AW30 0.425~1.2mm Basic 1.5 ↑ Porous Functional (Polystyrene+DVB) + Carboxylate (Polystyrene+DVB) + Tertiary Amine Group

※ TEC: Total Exchange Capacity

	istrial grade)			SBA	WAC	WBA
		Performance	MC-08 MC-10			
Softening (Industrial grade)	SAC	Basic	UKC-08 UKC-10, UKC-12 SCR-B KC-07, KC-08			
Softening (Food grade)	SAC	Basic	KH-70 KH-80			

Hardness components (calcium, magnesium, etc.) in raw water can form scale and cause problems in water treatment systems. The softening devices produce soft water by removing hardness components from raw water with cation exchange resins. In general, strongly acid cation exchange resins are used in the water softening, and purified salts are used as regenerant. When the hardness component is high in raw water, it is treated with weakly acid cation resins.

Sodium hypochlorite(NaClO), Free chlorine(Cl₂), Ozone(O₃)

When used with oxidizing agents or sterilizer(sodium hypochlorite and free chlorine), strong acid cation exchange resin with excellent oxidation resistance is recommended.

Sele	ction	CIO ₂ Concentration	Cl_2 or O_3 Concentration	
Performance	MC-08			
Basic	UKC-08 SCR-B KC-07, KC-08	0.1ppm ↓	0.2ppm ↓	
Performance	MC-10	0.15ppm ↓	0.3ppm ↓	
Basic	Basic UKC-10		0.3ppin ‡	
Basic	UKC-12	0.2ppm ↓	0.4ppm ↓	

Food grade softening

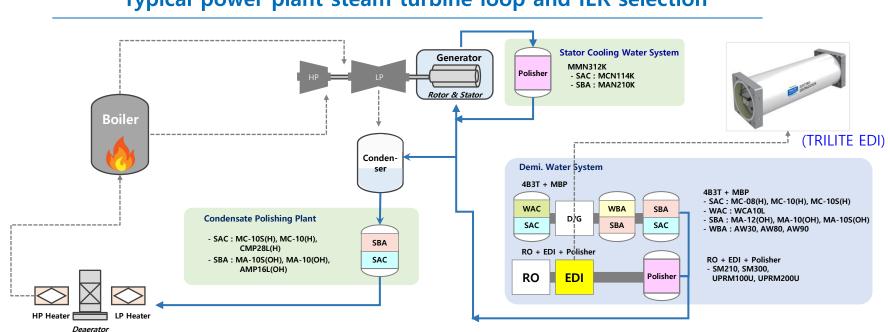
When food grade softening is required, such as a food company, it is necessary to use an appropriate food grade ion exchange resins.

KH-80 SCR-B

(NSF Test method)

Put 50ml ion exchange resins into 100 ml at 70°C, and measure APHA(unit of chromaticity) with a Visible Spectrophotometer.

TRILTIE	Grade	Spec.	Day1	Day2	Day3	Day4	Day7
KH-80	Food	< 20	12	13	13	13	14
SCR-B	Tech	-	145	149	153	160	183

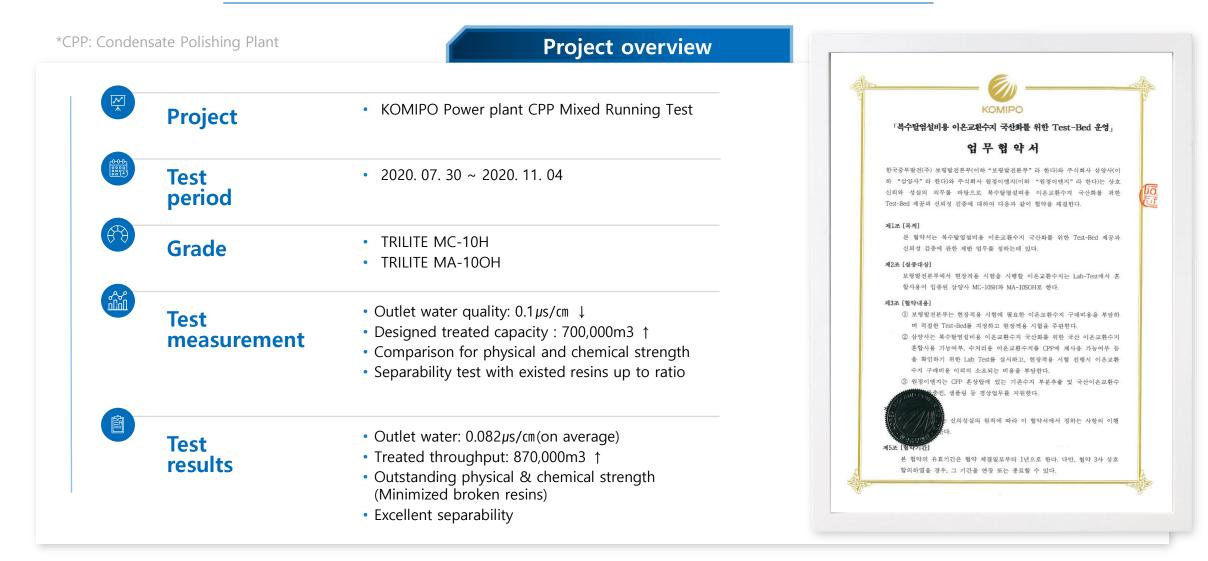


Dem	ineralization system	Treated water quality	Product Line	SAC	SBA	WAC	WBA
2B2T (2Bed 2Tower) Cation Exchanger +	SAC SBA		Performance	MC-08 MC-10	MA-12 MA-20		
Anion Exchanger 2B3T Cation Exchanger + Degasifier + Anion Exchanger	SAC D/G SBA	1~2µs/cm ↓ SiO ₂ 20~100ppb↓	Basic	SCR-B UKC-08 UKC-10 KC-08	SAR10 SAR20 UKA-12 KA-12 KA-20		
Working MB	SBA	1µs/cm ↓	Performance	MC-08 MC-10	MA-20		
(Mixed Bed)	SAC	SiO ₂ 100ppb ↓	Basic	SCR-B	SAR20MB		
2B2T or 2B3T or	SAC D/G SBA SBA		Premium	MC-10S(H)	MA-10S(OH)		
RO or EDI + MBP	RO or EDI SBA	0.1µs/cm ↓ SiO ₂ 5~10ppb ↓	Performance	MC-08 MC-10	MA-10		
(Mixed Bed Polisher)			Basic	SCR-B	SAR10MB KA-10MB		
	SBA SBA	10~17MΩ⋅cm↑ SiO ₂ 5~10ppb↓	Performance	MC-08 MC-10	MA-12 MA-10		AW90 AW80
3B3T+MBP	Layered bed Up-flow system		Basic	SCR-B UKC-08 UKC-10	SAR10MB UKA-12		AW30
	WAC NG WBA SBA	10~17MΩ·cm ↑	Performance	MC-08 MC-10			AW90 AW80
4B3T+MBP	Layered Bed Down-flow system	SiO ₂ 5~10ppb↓	Basic	SCR-B UKC-08 UKC-10	KA18LB	WCA10L	AW30
4B3T+MBP+	WAC D/G WBA SBA Conde SBA	0.1 <i>µ</i> s/cm↓	Premium	MC-10S(H) MC-14H	MA-10S(OH) MA-15OH		
CPP(Condensate Polisher)		SiO₂ 10ppb↓	Performance	MC-08H MC-10H	MA-12OH MA-10OH		
RO(Reverse Osmosis) +	RO Polis-	15~18MΩ·cm↑ SiO ₂ 5~10ppb↓	Premium	UPRM100U,	UPRM200U, l	JPRM300U	
Polisher(Polishing Resin)	Non-regenerable	10~17µs/cm↑ SiO₂ 10ppb↓	Performance	SM210, SM300 SM200			

X Anion grade name + (P) means anti-clumping treatment. Anion resin used for MB or MBP requires anti-clumping treatment that helps separation of cation and anion.

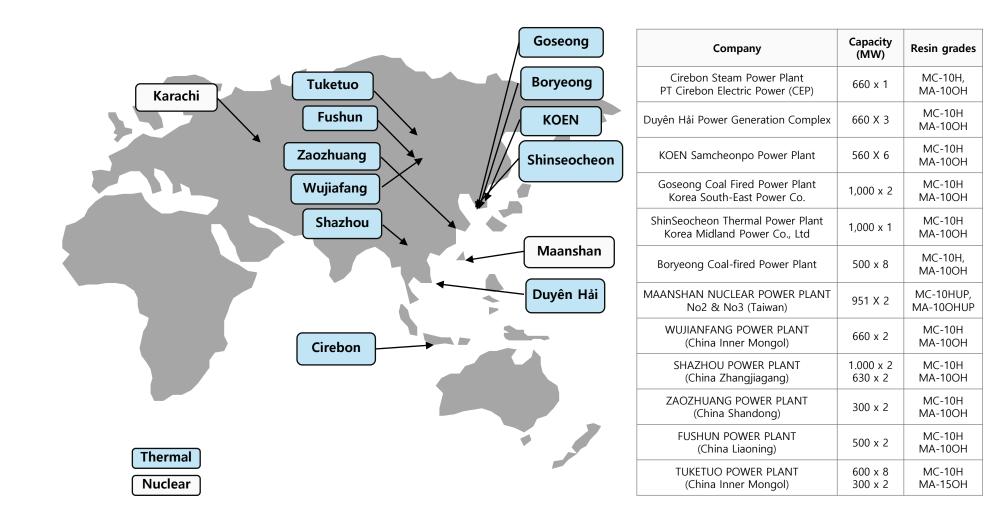
Power Plant

Typical power plant steam turbine loop and IER selection


Excellent hydraulics, physical chemical stability, excellent separability of cation and anion resin contribute to stable operation of power plants

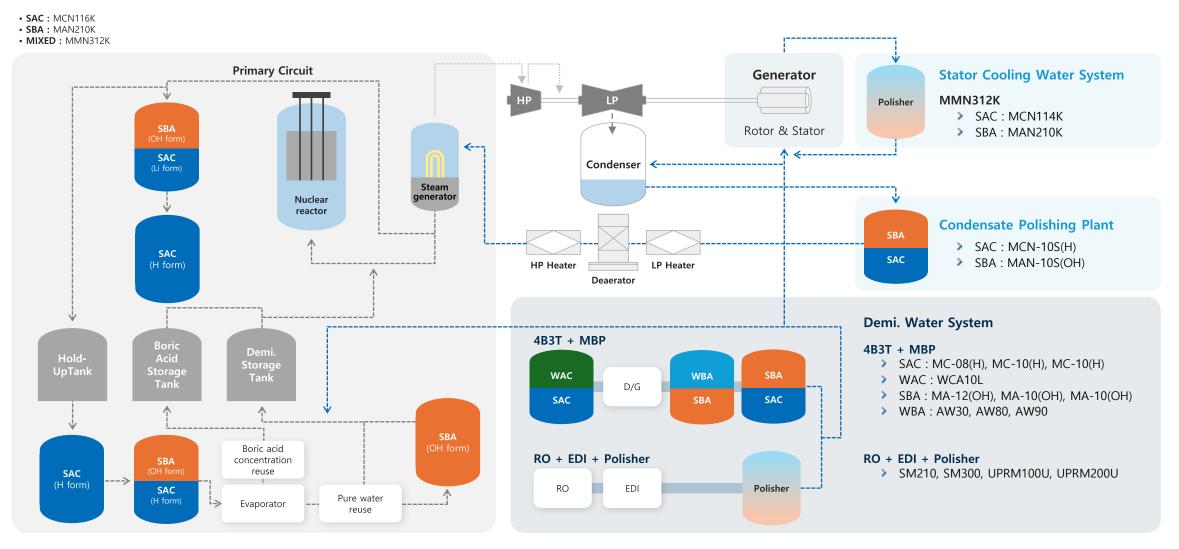
	Condensate Polishing							Post-RO or EDI polisher		
TRILITE	St	rongly Acidic	Cation re	esin (SAC)	Strongly Basic Anion resin (SBA)			ר (SBA)		
삼양 트리라이트 Ion Exchange Resin	Туре	Grade name	TEC (eq/l)	Particle distribution	Туре	Grade name	TEC (eq/l)	Particle distribution	UPS	UPRM100U Mixed Resin ratio = 1 : 1 as same equivalent
Gau-		CMP28L	2.05 ↑)5 ↑		Porous AMP16L	1.3 ↑		Gau-	SM210 or SM300
ssian	Porous	CMP28LH	1.8 ↑	0.425~1.2mm	type1	AMP16LOH	1.1 ↑	0.425~1.2mm	ssian	Mixed Resin ratio = 1 : 1 as same equivalent
		MC-10	2.2 ↑	0.60~0.70mm		MA-10	1.35 ↑	0.50~0.60mm		Stator Cooling Water System
	Cal	MC-10H	2.0 ↑	0.61~0.71mm	Gel	MA-10OH	1.1 ↑	0.54~0.64mm		
UPS	Gel	MC-14	2.5↑	0.60~0.70mm	type1	MA-15	1.4 ↑	0.55~0.65mm		MMN312K
		MC-14H	2.4 ↑	0.60~0.70		MA-15OH	1.2 ↑	0.58~0.68mm	UPS	Mixed Resin ratio = 1 : 1 as same equivalent

CASE STUDY



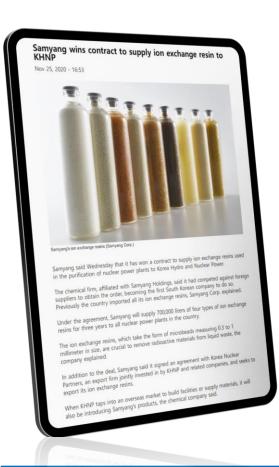
CPP Running Test

Major CPP reference



Power Plant

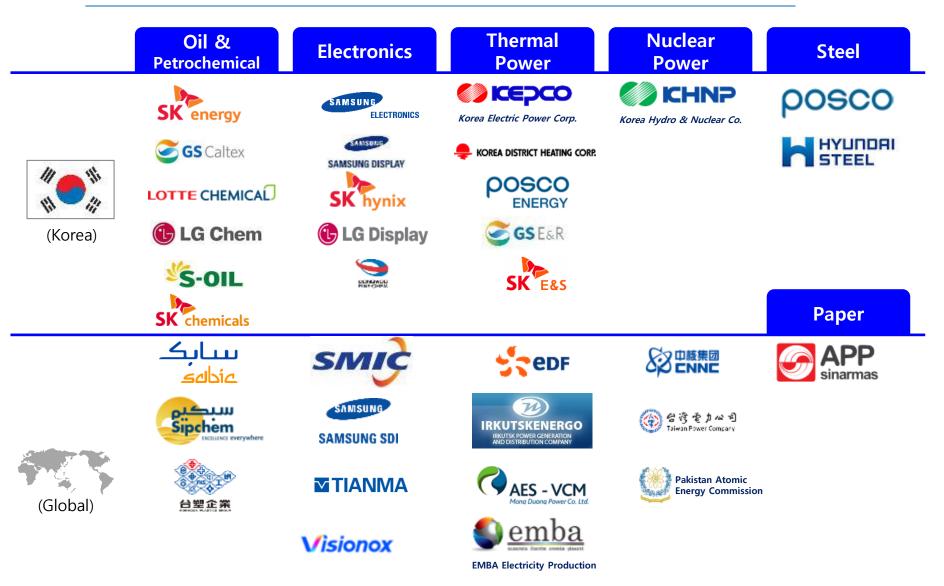
Typical power plant steam turbine loop and IER selection



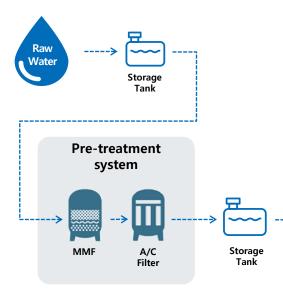
CASE STUDY

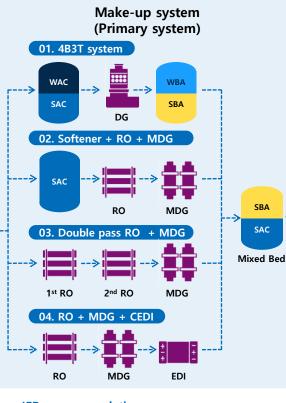
Nuclear primary circuit grade Spec-in

Project Overview



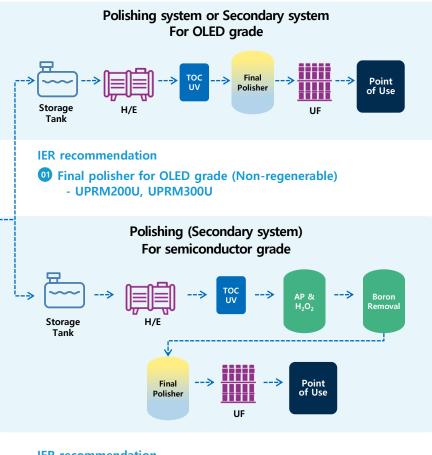
Project	KHNP nuclear power plant for	primary circuit		
Contract	2020.10.01 ~ 2023.09.30 (3years))		
Specification				
		Unit	Cation	Anion
	Total Exchange Capacity	eq/ł	> 2.4	> 1.2
	Ion Conversion Rate	%	>99	>95
	∆тос	µg∕ ł	< 10	< 10
	low metal traces	Mg/kg of Dry Resin	Na<50, K<40, Ca<2 Cu<5, Co<5, Al<1	
Test measurement	Certified by the third-party author	orized Institution		
TRILITE GRADE	 TRILITE MCN116K (SAC) TRILITE MAN210K (SBA) TRILITE MMN312K(Mixed) 			
Results	Quality Certified by Veritas(Fr), a	ffigio(Ge), NWT(USA)		
Total Volume	699,200L			


TRILITE resins for primary circuit feature very high exchange capacity and extremely low TOC leakage, and produce high purity water. Excellent H/OH conversion rate and low metal traces contribute to stable operation of power plants


Major reference list

- > **MMF** : Multi-media filter
- > A/C Filter : Activated carbon filter
- **DG** : Degasifier
- > **MDG** : Membrane degasifier
- > H/E : Heat exchanger

IER recommendation


01 4B3T system :

- > SAC : MC-08(H), MC-10(H)
- > WAC : WCA10L
- > SBA : KA18LB, MA-12(OH), MA-10(OH)
- WBA : AW30, AW80, AW90

O2 Softener : MC-08(H), SCR-B(H)

O3 Mixed Bed (Regenerable) :

- SAC : MC-10(H), UPRC220U
- SBA : MA-10(OH), UPRA220U

IER recommendation

- **O1** AP(Anion polisher) : UPRA300U
- 02 H2O2 removal :UPHR1
- **Boron removal :** CLR-B3UP
- **64** Final polisher for Semiconductor grade (Non-regenerable) :
 - UPRM300U, UPRM400U

TRILITE UPW Resin

UPRM200U

UPRM400U

Specification of Ultrapure water

Resistivity \geq 18.1 MQ·cm

TOC ≤ 5ppb

Silica ≤ 5ppb

Resistivity ≥ $18.2 \text{ M}\Omega \cdot \text{cm}$ TOC ≤ 1ppb Silica ≤ 1ppb Metal ≤ 0.1 ppt Boron ≤ 1ppt

TRILITE Ultrapure water ion exchange resin product line

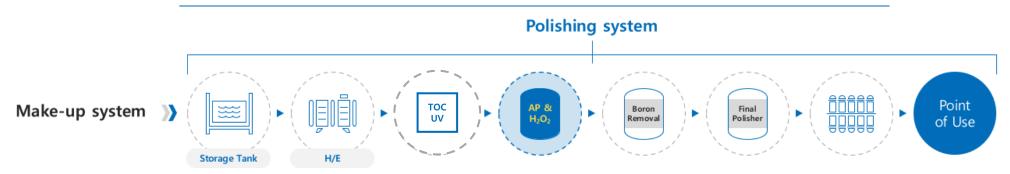
TRILITE ultrapure water ion exchange resin is produced through strict quality control in the latest facilities and has the following features.

- ① Strict standard for uniformity coefficient (1.1 \downarrow), to result in high operating capacity at fast service flow
- (2) Very high conversion rate of resins to minimize ionic leakage(H⁺, OH⁻)
- ③ Strict quality control over TOC(Total organic carbon) and trace metal ions

TRILITE ultrapure water ion exchange resins are supplied to various ultra-pure water facilities in Korea and abroad, and have a reliable reference from OLED(Samyang Display, LG Display, etc) to semiconductor (Samsung Electronics, SK Hynix, etc.). Samyang is contributing to enhancing competitiveness of customers with stable quality management and timely deliver

TRILITE ultrapure water ion exchange resins vary in grades according to different outlet conditions and the characteristics are as follows.

Grade Series	Representative grade	Cation Anion conversion rate Outlet con				Remark and application
Selles	grade	H+(%)	OH⁻(%)	Cl⁻(%)		
UPR100 Series	UPRM100U	99.0 †	95.0↑	1.0↓	Guarantee) Resistivity > 17.0MΩ·cm Actual) Resistivity > 18.0MΩ·cm	Production of high resistivity UPW Production of general electronics grade demineralized water, and Final polisher
UPR200 Series	UPRM200U	99.9 ↑	95.0↑	1.0↓	Resistivity > 18.1MΩ·cm(in 30 min) △TOC < 5 ppb (in 120min)	Production of very high resistivity and Low TOC level UPW Demineralized water for LCD/OLED Final polisher
UPR300 Series	UPRM300U	99.9 ↑	97.0 ↑	0.1↓	Resistivity > 18.2MΩ·cm(in 30 min) △TOC < 1 ppb (in 180min)	Production of very high resistivity and very low TOC level UPW LCD/OLED, semiconductor grade final polisher
UPR400 Series	UPRM400U	99.9↑	97.0↑	0.1↓	Resistivity > $18.2M0 \cdot cm(in 30 min)$ $\triangle TOC < 1 ppb (in 180min)$ Metal impurity (ppm, as Dry Base) Na<1, Fe<1, Zn<0.5,Al<0.5, Cu<0.5	Production of very high resistivity, very low TOC level, very low metal ion leakage UPW Semiconductor grade final polisher


※ Feed water

- UPR100 Series : Conductivity 10µs/cm RO outlet, SV36

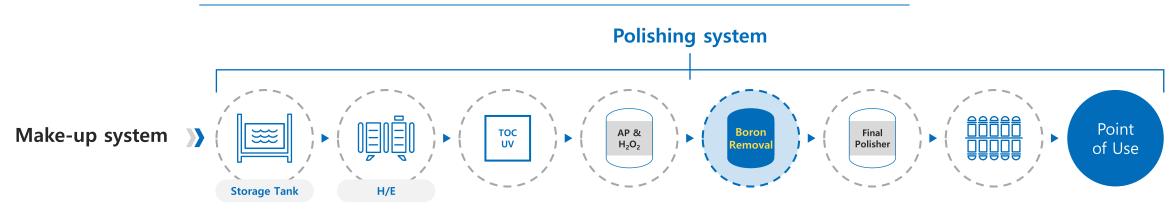
- UPR200, 300, 400 Series : Resistivity >17.5MΩ cm, TOC <2ppb, SV30

Hydrogen Peroxide removal

TOC UV decomposes TOC components in treated water using UV OF 185nm, which has a high molecular bond breaking power. It generates highly reactive Hydroxyl radicals, breaks the binding ring of TOC components, decomposes them into H_2O and CO_2 , and the generated CO_2 is removed from the later AP (Anion polisher). Here, ion exchange resin with very low TOC leakage (\triangle TOC<1ppb) should be selected.

TOC-UV not only decomposes TOC components, but also generates hydrogen peroxide (H_2O_2) of about 30 ppb or less by reacting with H_2O by hydroxyl radicals. The generated hydrogen peroxide deteriorates the AP at the later process, causing performance degradation, and causing a problem in the process and causing wafer defects.

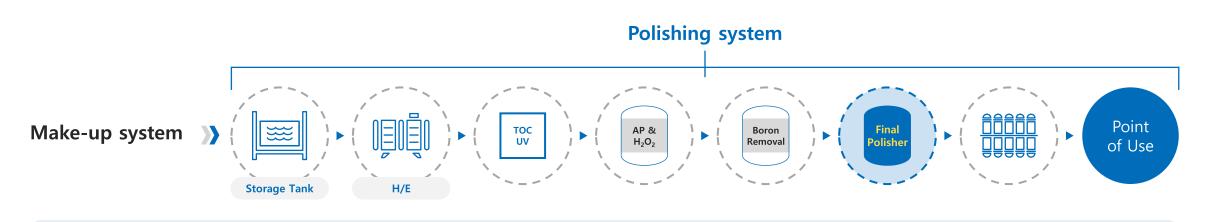
 H_2O_2 removal resin TRILITE UPHR1 extends the stability and life of the Polishing system by removing H_2O_2 and anions generated by TOC UV treatment.


TRILITE UPHR1 has been supplied to Semiconductor manufacturer in South Korea and ultra-pure water facilities at various sites, proving its excellent performance.

Anion Polishing Resin	CH ₂ N(CH ₃) ₃ +OH-	7 1550	он-	Slow H ₂ O ₂ removal rate and generation of O ₂ deteriorates	
Anion Polishing Resin	CH₂N(CH₃)₃*OH-	+ H ₂ O ₂	+ + H ₂ O CH ₂ N(CH ₃) ₃ 1/20	life cycle (resin degradation and high TOC)	
UPHR1	CH ₂ N(CH ₃) ₃ ⁺ SO ₃ ² CH ₂ N(CH ₃) ₃ ⁺ SO ₃ ² CH ₂ N(CH ₃) ₃ ⁺ OH-	+ H ₂ O ₂	$CH_2N(CH_3)_3^+$ SO_3^{2-} $CH_2N(CH_3)_3^+$ $+ 2H_2$	Fast H_2O_2 removal rate and removes anions and CO_2	

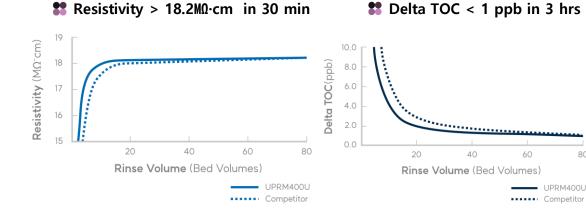
TRILITE storage and the	Grade	Inlet Condition	Outlet condition
Hydrogen Peroxide removal (H ₂ O ₂ removal)	UPHR1	Resistivity >18.2MΩ∙cm TOC < 1 ppb	Guaranteed: Resistivity > $18.2M\Omega \cdot cm$ (in 24 hr) Guaranteed: $\triangle TOC < 1.0 \text{ ppb}$ ((in 24 hr) H ₂ O ₂ removal > $16g H_2O_2/\ell$ -Resin Metal <1 ppt

Boron removal resin


> Boron(boron, B) has very weak selectivity with ion exchange resins in water and is eluted first because of its weak affinity, reducing the stability and life of the polishing system.

> Boron is used as a dopant in semiconductor production, and since unintended inflow of boron affects semiconductor performance, boron must be managed very strictly as less than 1 ppt in the semiconductor manufacturing process to realize stable operation.

TRILITE Sim Elem = Ion Exchange Risin	Grade	Exchange capacity	Inlet Condition	Outlet condition
Boron Polisher	CLR-B3UP	TEC (eq/ ℓ) : 0.9 \uparrow Boron exchange capacity (eq/ ℓ) : 0.4 \uparrow	Resistivity > 17.5MΩ∙cm TOC < 2 ppb	∆TOC < 1 ppb (in 48 hours)


Semiconductor Final Polisher

1 Strict standard for uniformity coefficient (1.1↓), to result in high operating capacity at fast service flow

2 Excellent conversion rate of resins to minimize ionic leakages Resistivity 18.2MΩ·cm (in 30 min), H⁺ 99.9%, OH⁻ 97.0%

3 Strict quality control over TOC(Total organic carbon) and trace metal ions: △TOC < 1ppb (in 180min)

****** Metal ion leakage analysis report

[Unit : ppt]

Li	Na	Mg	AI	К	Са	Cr	Mn
< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fe	Со	Ni	Cu	Zn	Ва	Pb	Sr
< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

× Feed water quality : Resistivity > 17.5MΩ.cm, TOC < 2ppb, SV=30

Semiconductor Final Polisher

TRILITE UPRM400U is a premium grade that minimizes metal ion leakage, and its features are as follows.

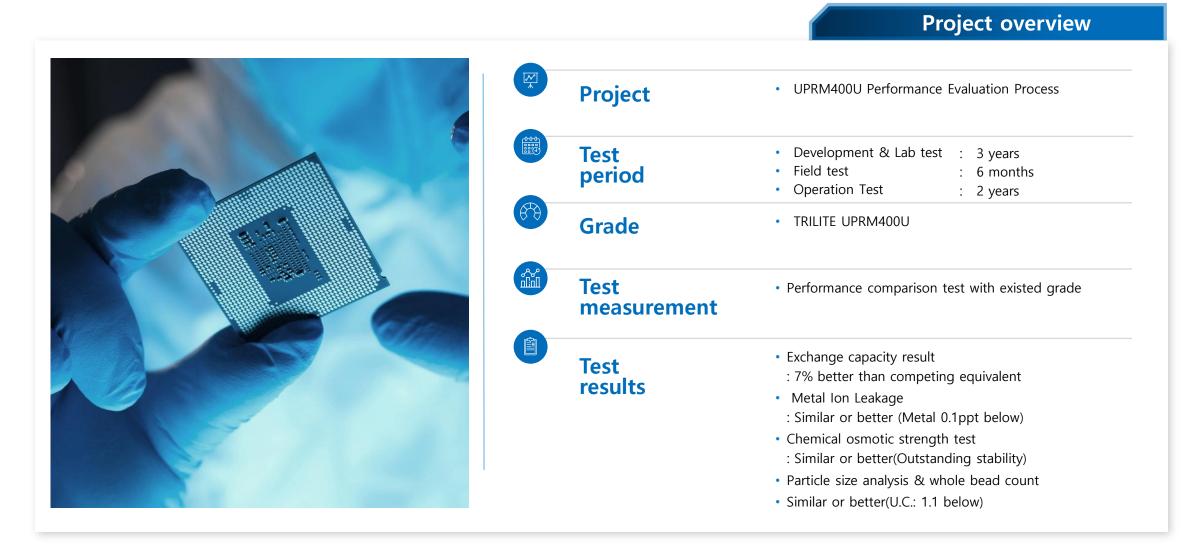
ltem	Spec	UPRM300U	UPRM400U
Resistivity*	> 18.2 MΩ·cm	O (in 30min)	O (in 30min)
∆TOC*	< 1 ppb	O (in 180min)	O (in 180min)
Particle (> 0.05µm)	< 200 pcs/ł	0	0
Boron	< 1 ppt	0	0
Metal**	< 0.1 ppt	Δ	0
lon***	< 1 ppt	Δ	0

■ Final polisher outlet specification (Korean company "S")

* Feed water : Resistivity >17.5 MΩ·cm, TOC < 2ppb, SV30 ** Li, Na, Mg, Al, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Ba, Pb *** F, Cl, NO₂, Br, NO₃, SO₄, PO₄, NH₄

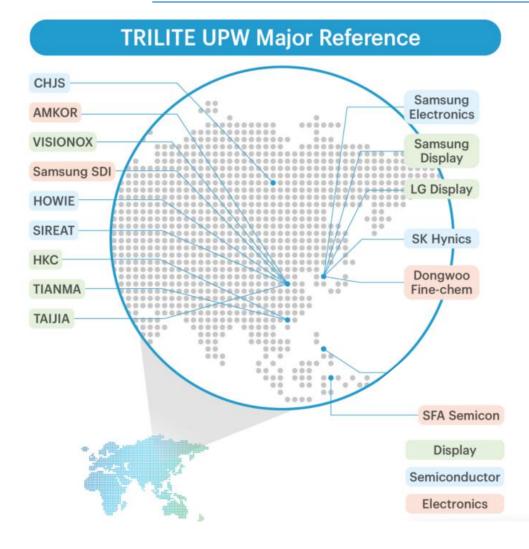
■ Korean company "S" Metal ion leakage analysis report

Sample	Day	U	Na	Mg	AI	×	Ca	4	Mn	Fo	Co	Ni
0.002210	0일		S= WHEN					Contraction of	1		1	10000
IN	5일차	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0,05	0.05	0.05
OUT Out	02											
Out	5일차	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
1				-	1			2			1.1.1.1.4.0	


Cu	Zn	\$r	Ba	Pb	F.	CI-	NO2-	Br	NO3-	\$042-	PO43-	NH4+
0.05	0.10	0.05	0.05	0.05	1.0	1,0	1,0	10	1.0	1.0	1.0	0,5
0.05	010	0.05	9.05	0.05	1.0	1.0	1,0	10	1.0	10	1.0	9.7

Li	Na	Mg	Al	К	Ca	Cr	Mn
< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fe	Со	Ni	Cu	Zn	Ва	Pb	Sr
< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
F	Cl	NO2	Br	NO3	SO4	PO4	NH4
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

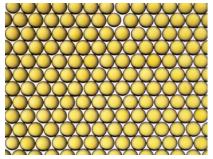
CASE STUDY



Semiconductor Final Polisher Spec-in

Final polisher reference

Customer Name	Grade
Samsung Electronics	UPRM400U
SK Hynix	UPRM400U
Samsung Display	UPRM200U
LG Display	UPRM200U
Samsung SDI	UPRM200U
DONGWOO FINE-CHEM	UPRM400U
CHJS	UPRM400U
SIREAT	UPRM300U
HOWIE	UPRM300U
TIANMA	UPRM200U
НКС	UPRM200U
VISIONOX	UPRM200U
TAIJIA	UPRM200U
Amkor	UPRM400U
SFA Semicon	UPRM200U

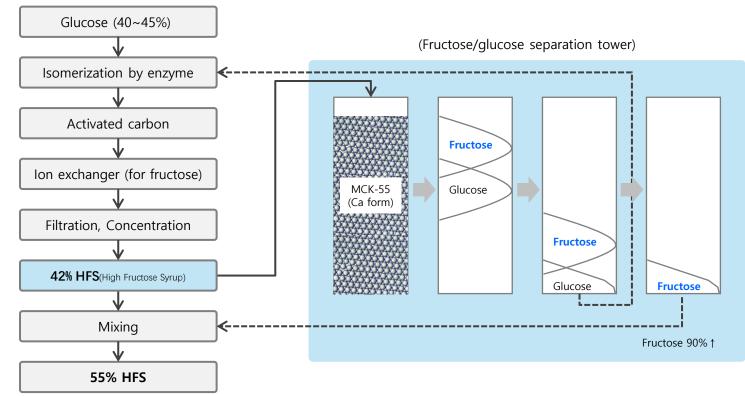


MCK Series the Best ion exchange resin for chromatography resins

TRILITE MCK Series is a chromatographic separation resin with a uniform particle size distribution of fine particles. Major application is high purity sugar separation such as Fructose/Glucose separation and sugar recovery from molasses, acid recovery, etc. The main principle of chromatographic separation is as follows.

- Ligand exchange chromatography : Separation using the interaction of specificity of several components. Example) Fructose/Glucose separation using MCK-55 (Ca-form)
- Size exclusion chromatography : Separation according to the size of the molecular weight Example) Separation of oligosaccharides using MCK-30 (Na-form)
- ③ Ion exclusion chromatography : Separation through repulsion between ions of the same sign Example) Sucrose collection from molasses using MCK-22M (K-form)

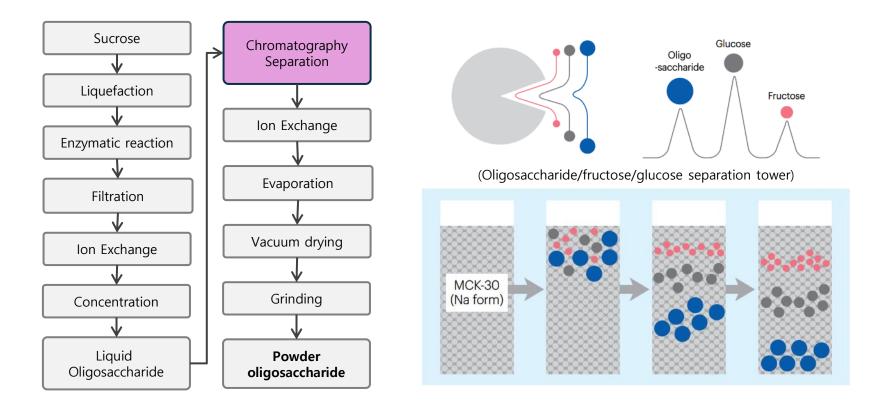
			Particle distribution								
	Casas links as	lonic	210~220 <i>µ</i> m	283~295µm	305~328µm	340~350µm					
	Cross-linkage	form									
-	5%	К			MCK-22M(305µm)	MCK-22K(346µm)					
		Na	MCK-30(220µm)	MCK-30J(295µm)	MCK-30L(328µm)	MCK-30K(350µm)					
	6%	К	MCK-32(213µm)	MCK-32J(288µm)	MCK-32L(320µm)	MCK-32K(345µm)					
		Са	MCK-35(210µm)	MCK-35J(283µm)	MCK-35M(305µm) MCK-35L(315µm)	MCK-35K(340µm)					
		Na	MCK-50(215µm)								
	8%	К	MCK-52(215µm)								
		Са	MCK-55(210µm)								


※ 离子大小和交联度是为了参考

Fructose/glucose separation using ligand exchange chromatography

Isomerization of fructose by the use of enzyme glucose which features a higher sweetness (1.7 times of sugar). The starch sugar is proved to be economically efficient and is substitutable to the use of sugar. However, the enzyme reaction is a reversible reaction. The isomerization is limited up to 42% (equal to 90% of sugar sweetness) due to reaction equilibrium. Hence, it is required to increase the glucose percentage up to 55%, wi th the IER technology.

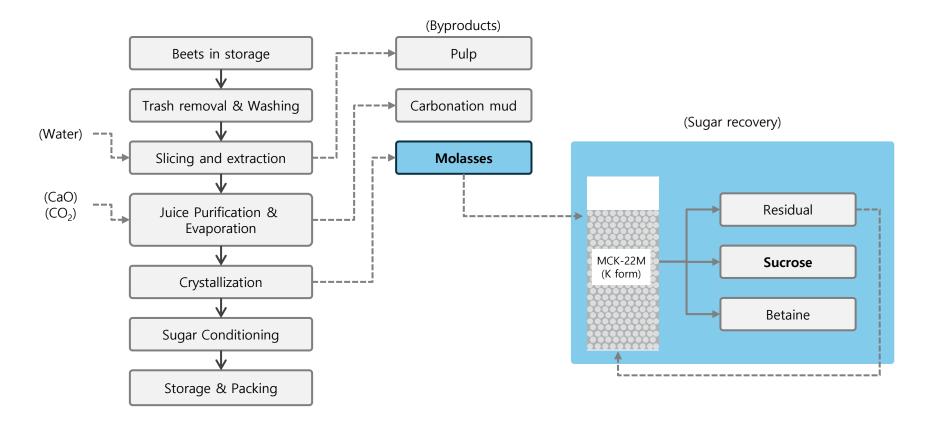
A typical process to treat the fructose/glucose mixture with the Ca+ type ion exchange resin tower is described as below. As the mixture passes through the IER layer, glucose moves faster than fructose which has a higher affinity with Ca ion. In this principal, glucose elutes in before the fructose. The collection of glucose is sold as a finished product, and the fructose I s put to the previous process to react with the isomerization enzyme.



Fructo-oligosaccharide separation using size-exclusive chromatography

Oligosaccharides exist through condensation polymerization of monosaccharides such as glucose, fructose, and galactose, and are classified into disaccharides, trisaccharides, and polysaccharides according to the number of bonds. Due to the nature of c ondensation polymerization, there is a limited concentration of disaccharides and trisaccharides.

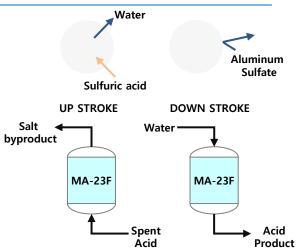
The concentration of fructo-oligosaccharides can be increased through size exclusion chromatography separation using Na typ e chromatography resin. This is a separating method according to the size of the molecular weight. There is no attraction betw een the stationary phase and the solute, and when the mobile phase simply passes through the porous fixed-phase resins, larg e molecules are excluded from the small molecules by passing only small molecules.



Sucrose recovery from molasses using ion exclusion chromatography

After the sugar cane or sugar beet juice is concentrated to separate the sugar crystals, the mother liquor remaining as a by-product contains sugar, salt, and non-sugar substances. This is called molasses, and was mainly fermented and used as feed for livestock. Molasses contains about 50% or more of sugar, and as a method for recovering it, the production of sugar of 90 to 93% purity can be increased through ion exclusion chromatography separation process using K-type chromatography resin.

Ion exclusion chromatography is a principle in which an electrolyte containing ions of the same sign as the charge of an ion exchanger, is eluted before a non-electrolyte using the property of being excluded from each other by ions and repulsive forces.



Acid purification using MA-23F resin

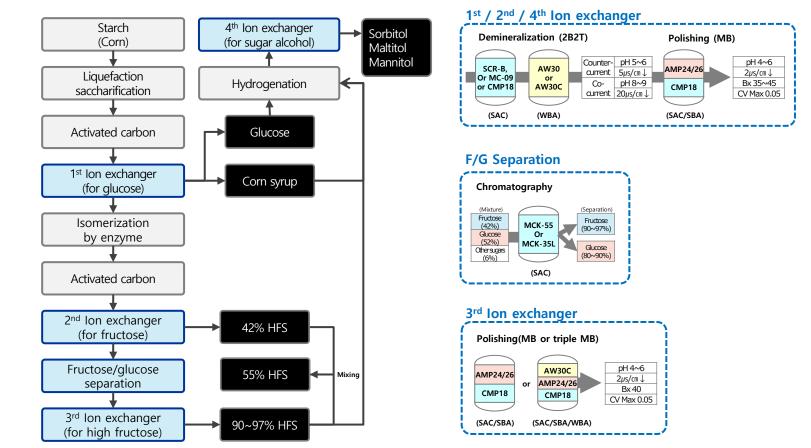
Acid purification process is based on the principle of acid retardation using anion chromatography resins.

When the acid and is salt pass through the ion exchange resin vessel filled with the acid form of the anion exchange resin(SO_4), the acid(H_2SO_4) is adsorbed to the ion exchange resin, but Metal salts($Al_2(SO_4)_3$) are based on the principle that they are not adsorbed. When the ion exchange resin is washed with water, salts that are not adsorbed are washed away and acid is adsorbed to be separated.

The acid recovery facility is called APU(Acid purification unit) and the actual operation is divided into an upstream process and a downstream process, and in the upstream process, metal salts are excluded by the chromatography resin and flowed out before the acid, separated as a by-product, and purified during the downstream process. The acid can be desorbed and recovered.

In general, it is possible to realize performance with an acid recovery rate of 70 to 95% or higher through the APU device, and although there is a difference according to the characteristics of each use, it is possible to remove 50 to 90% of metal components, and antimony(Sb) and bismuth (if pollutants such as Bi) are present, the removal efficiency drops to about 50%.

APU	H ₂ SO ₄ Product				Anodizing		HCI Product			
	H_2SO_4	Ni	Cu	HNO ₃	HF	Metal	HCI	Со	Zn	
Performance	(g/l)	(g/l)	(g/l)	(g/l)	(g/l)	(g/l)	(eq/l)	(g/l)	(g/ℓ)	
Feed	275	15	5	107	19.3	45	3.3	8.4	1.13	
Product	240	3.75	1.25	104	18.5	12.6	3.2	7	0.03	
Byproduct	35	11.25	3.75	0.3	0.3	30.4		1.4	1	
Recovery	87%			97%			97%			
Removal		75%	75%	0.3%	1.6%	67.6%	-	16.7%	88.5%	


Starch sugar refining

Starch sugar refining process

When purifying starch sugar and sugar alcohol, the organic matter content or viscosity of the feed solution is higher than that of general water treatment. As the adsorption ability greatly affects the yield, so ion exchange resin should be optimized for each process. Samyang Corporation is the only company in the world that produces ion exchange resins and starch sugars, and supplies optimized ion exchange resins based on insights on starch sugars and improves the products through continuous technical discussions with customers.

Ion exchange resins for food application should be strictly controlled for impurities and foreign substances during production, and should be handled as food grade when trading internationally. In addition a food additive license is required and HALAL certification is required for products of for Islamic countries.

Starch sugar refining

Starch sugar refining resins

For starch sugar producing process, the reactivity is low because the viscosity of the treated liquid passing through the ion exchange resin is higher than that of general water treatment. Therefore, porous type resin, which has higher reactivity than gel type resin, is mainly used. TRILITE AW30C (WBA95% †) which has high heat resistance and high weak base ratio, is recommended when the temperature of the treated solution is high (60°C) or isomerization is a concern when selecting a weak base anion resin.

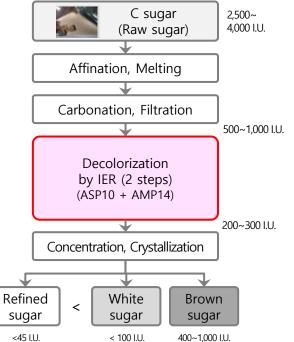
TRILITE		Strong acid cat	tion resin (SA	Strong base anion resin (SBA)				
삼양 트리라이트 Ion Exchange Resin	Туре	Grade	TEC (eq/ℓ)	Particle distribution	Туре	Grade	TEC (eq/ l)	Particle distribution
Caussian	Gel	SCR-B	2.0 ↑	(General type) 0.3~1.2mm	Dereus trac?	AMP24	1.0 ↑	(General type) 0.3~1.2mm
Gaussian	Porous	CMP18	1.8 ↑	(L-type) 0.425~1.2mm	Porous type2	AMP26	1.1 ↑	(L-type) 0.425~1.2mm
UPS	Gel	MC-08	2.0 ↑	0.55~0.65mm				
Functional group		Sulfo	onate		Туן	pe2 : DMEA, dim	nethylethanola	mine

8						
	Туре	Grade	TEC (eq/l)	SBA/WBA Ratio	Particle distribution	Remark and application
Gaussian		AW30	1.5 ↑	10/90	(General type) 0.3~1.2mm	Economical results for starch sugar refining and decolorization. But, care must be taken for the isomerization is expected (Fructose refining) due to high strong basicity.
Caussian	Porous	AW30C	1.6 †	5/95	(L-type) 0.425~1.2mm	High WBA concentration and excellent heat resistance(100°C). Applicable without heat exchanger and to the process where isomerization is expected.
		AW30M	1.5 ↑	10/90	0.50~0.90mm	Recommended for Upflow system due to low
UPS		AW90	1.6 ↑	17/83	0.50~0.60mm	uniformity coefficient.
Functional group			Tertiary Amin	2		

Sugar refining

White

Brown

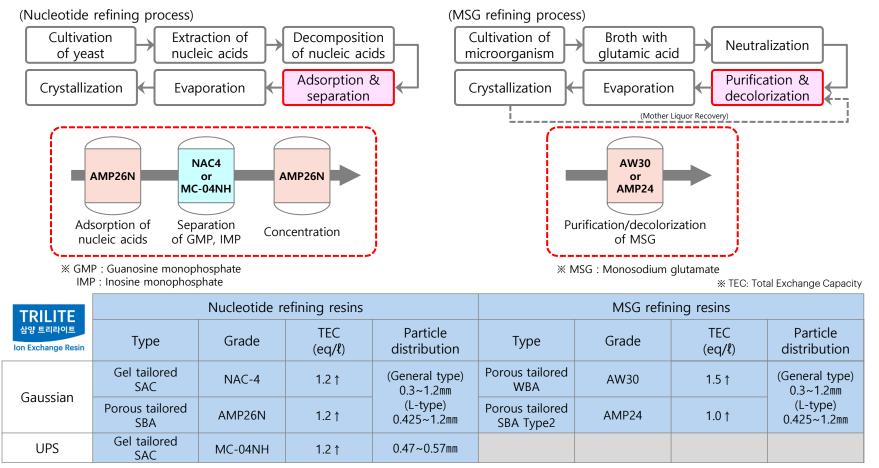

sugar

Refined

sugar

<45 I.U.

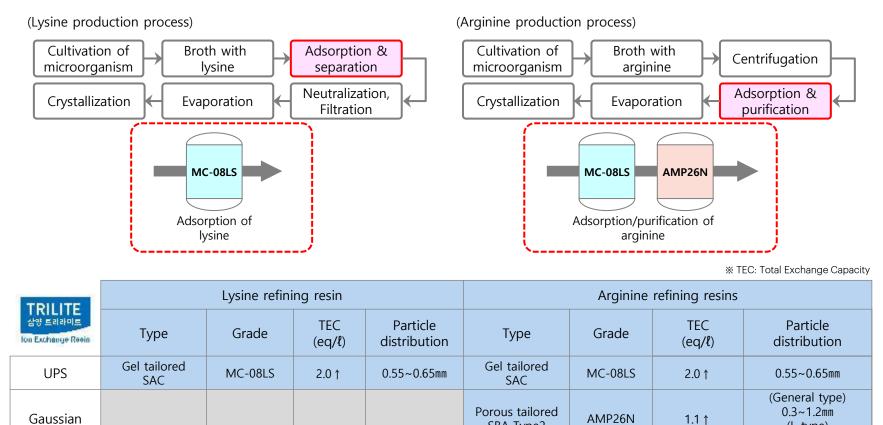
>



Nucleotide, MSG refining

Nucleotide, MSG refining process and ion exchange resins

Nucleotide is used as a seasoning and raw material of seasonings, and TRILITE AMP26N and NAC-4 are optimized products for the adsorption, separation and concentration of nucleic acid substances, with outstanding performance and long life cycle. Also, MSG is another major seasoning and raw material of seasonings. Ion exchange resins are used in the process of purifying and decolorizing MSG produced through fermentation, and weak base or strong base anion resin is used depending on the operating conditions of the customers.


Lysine, Arginine refining

(L-type) 0.425~1.2mm

Lysine, Arginine refining process and ion exchange resins

Lysine, which is used as a feed nutrition additive, is an amino acid that is most actively commercialized, and TRILITE MC-08LS is a UPS resin developed specifically for lysine separation/purification and has excellent adsorption capacity and physicochemical strength. Arginine is a kind of natural amino acid that is widely used in medicines, foods, and other animal feeds. Fermentation broth passes through a strong acid cation resin, adsorbs arginine, and is then purified with a strong base anion resin and manufactured through a decolonization process.

SBA Type2

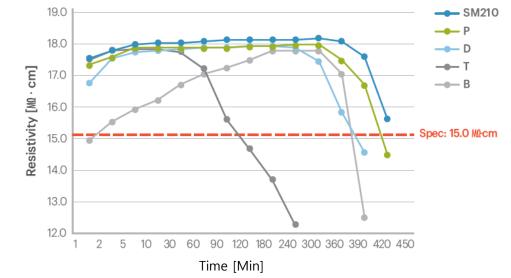
Ready to use mixed resins

The mixed resins produce high-purity pure water without a huge capital equipment but used with cartridge and pressure vessels, and generally not regenerated.

TRILITE SM200, SM210 are widely applied for Wire-EDM feature high throughput compared to competing products and TRILITE SM300 is widely used for post-RO polisher, producing very high purity water, near to UPW level (Resistivity >17.0M Ω ·cm), and specialized for trace impurities such as SiO₂.

Grade	Easture & Application	Comp	Components —		Inlet, Outlet
Grade	Feature & Application	Comp	onents	Inlet	Outlet
SM200	Simple production of pure water from tab water	SAC	SBA		Guaranteed Resistivity > 10.0 M Ω -cm (in 10min.)
3101200	EDM(Wire-cutting)	(H+ 99.0%↑)	(OH-90.0%↑)	Potable water Conductivity	Actual Resistivity > 15.0 M Ω -cm (in 10min.)
SM210	Simple production of pure water from tab water	SAC	SBA	150µs/cm SV36	Guaranteed Resistivity >15.0 $M\Omega$ -cm (in 10min.)
31012 10	Demineralization system	(H+ 99.0%↑)	(OH-95.0%↑)		Actual Resistivity > 17.0 M Ω -cm (in 10min.)
SM300	High resistivity	SAC	SBA		Guaranteed Resistivity > 15.0 $M\Omega$ -cm (in 10min.)
2141200	Excellent SiO ₂ removal MB for post-RO or EDI	(H+ 99.0%↑)	(OH-95.0%↑)	Post-RO Conductivity 10	Actual Resistivity > 17.0 M Ω -cm (in 10min.)
UPRM100U	Very high resistivity	SAC	SBA	µs/cm SV36	Guaranteed Resistivity > 17.0 $M\Omega$ -cm (in 10min.)
(UPW grade)	Electronics grade UPW	(H+ 99.0%↑)	(OH-95.0%↑)		Actual Resistivity > 18.0 M Ω -cm (in 10min.)
UPRM200U (UPW grade)	Very high resistivity Very low △TOC level OLED UPW Final polisher	SAC (H+ 99.9%↑)	SBA (OH-95.0%↑)		Resistivity > 18.1 MΩ·cm (in 30min.) △TOC < 5ppb (in 120min)
UPRM300U (UPW grade)	Extremely high resistivity Extremely low △TOC level Semiconductor UPW Final polisher	SAC (H+ 99.9%↑)	SBA (OH-97.0%↑)	UPW >17.5MΩ·cm TOC < 2ppb	Resistivity > 18.2 MΩ·cm (in 30min.) △TOC < 1ppb (in 180min)
UPRM400U (UPW grade)	Extremely high resistivity Extremely low △TOC level Low metal ion leakage Semiconductor UPW Final polisher	SAC (H+ 99.9%↑)	SBA (OH-97.0%↑)	SV30	Resistivity > 18.2 M Ω -cm (in 30min.) \triangle TOC < 1ppb (in 180min) Metal ion leakage < 0.1 ppt

Ready to use mixed resins



Quality management, Quality comparison test, Packing types

TRILITE mixed resins are subjected to strict quality control through automatic water collection pilots for each production batch, and can be supplied in various packing types.

TRILITE mixed resins are received for its superior throughput and stable quality compared to competing products.

Performance comparison test summary

- TRILITE SM210 compared to four types of mixed bed resins of competitors
- All samples showed results of purity higher than than 15.0MQ.cm
- As the collected throughput increases, SM210 resulted most stable purity

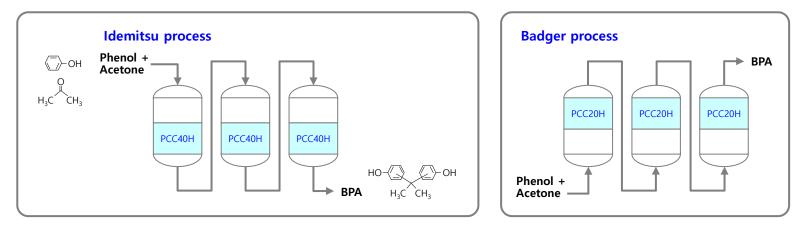
^{*}Feed water: pH 6.2, Conductivity 139.0µs/cm, Resin volume 0.5ℓ, Flow rate 0.3ℓ/min, SV=36

Catalyst

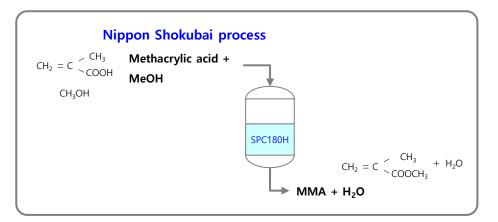
※ TEC: Total Exchange Capacity

TRILITE 삼양 트리라이트 Ion Exchange Resin		Strongly acidic cation resins for Catalyst (SAC for catalyst)										
	Туре	Grade	TEC (eq/ l)	Particle distribution		Туре	Grade	TEC (eq/ l)	Particle distribution			
	Gel	PCC20H	0.7 ↑	(Conoral two)	UPS	Gel	MC-04H	1.7 *	0.47~0.57mm			
	Catalyst	PCC40H	1.2 ↑	(General type) 0.3~1.2mm	0P3	Catalyst	IVIC-04H	1.2 ↑	0.47~0.371111			
Gaussian	Porous	CMP08LH	1.0 ↑	(L-type)	Constant	Porous Catalyst	SPC400H	1.0 ↑	(General type) 0.3~1.2mm			
Gaussian	Catalyst	CMP28LH	2.0 ↑	0.425~1.2mm			SPC160H	1.5 ↑				
	136913	SPC260H	1.7 ↑	(XL-type) 0.7~1.2mm	Gaussian	136913	SPC180H	1.5 ↑	(L-type)			
		SPC280H	2.0 ↑	0.7~1.2000		Markey	SPC320H	1.9 ↑	0.425~1.2mm			

(Typical catalysis application and selection of catalytic resins)


Application	Reaction Mechanism	Catalyst resins	Equivalent
Hydrolysis of methyl acetate	$CH_3 \xrightarrow{0} CH_3 + H_2O \xrightarrow{H+ cat.} CH_3 \xrightarrow{0} CH_3 + CH_3OH$	CMP08LH	DIAION PK208LH
Esterification reaction	$CH_2 \Rightarrow \begin{pmatrix} CH_3 \\ COOH \end{pmatrix} + ROH \xrightarrow{H+ cat.} CH_2 \Rightarrow \begin{pmatrix} CH_3 \\ COOR \end{pmatrix} + H_2O$	PCC40H, MC-08H, CMP08LH, SPC160H, SPC180H, SPC400LH	
Synthesis of MMA(methyl methacrylate)	$CH_2 = C \begin{array}{c} \sim CH_3 \\ \sim COOH \end{array} + CH_3OH \rightarrow CH_2 = C \begin{array}{c} \sim CH_3 \\ \sim COOCH_3 \end{array} + H_2O$	SPC180H	
Alkylation of phenol	$ \begin{array}{c} OH \\ \downarrow \\ H \end{array} + CH_2 = \begin{array}{c} OH \\ \downarrow \\ H \\ \downarrow \\ H \end{array} + CH_2 = \begin{array}{c} OH \\ \downarrow \\ \downarrow \\ H \\ \downarrow \\ H \end{array} + CH_3 $	SPC260H, SPC320H	Amberlyst15Wet
Synthesis of Bisphenol A	\bigcirc -OH + H_3C \bigcirc CH ₃ \rightarrow HO- \bigcirc \bigcirc OH H_3C \bigcirc OH	РСС20Н РСС40Н	DIAION SK104H Lewatit K1131S
Methyl tertiary butyl ether(MTBE)	$H_2C \prec _{CH_3}^{CH_3} + CH_3OH \rightarrow H_3C + _{CH_3}^{CH_3}OMe$	SPC260H, SPC280H	Amberlyst35Wet
t-amyl methyl ether(TAME)	$\begin{array}{cccc} H_{2}C \preccurlyeq & CH_{3}CH_{3} \\ H_{2}C \preccurlyeq & CH_{3}CH_{3} \\ CH_{3} \end{array} + & CH_{3}OH \rightarrow & H_{3}C + OMe \\ CH_{3} \\ CH_{3} \end{array}$	SPC160H, SPC180H	Lewatit K2621

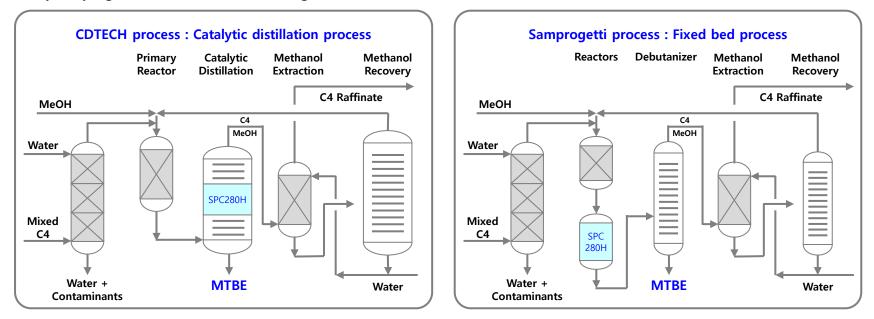
Catalyst


Bisphenol-A(BPA) Catalyst

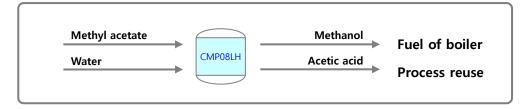
Bisphenol-A(BPA) is used as a raw material for manufacturing various plastics such as polycarbonate or epoxy resin, and high-purity Bisphenol-A can be produced by using an ion exchange resin as a catalyst in a mixture of phenol and acetone.

(MMA(Methylmethacrylic acid) Catalyst)

MMA (Methylmethacrylic acid) is used as a raw material for acrylic resins, paints, and adhesives due to its excellent transparency and durability against temperature and can be produced by using an ion exchange resin as a catalyst in a mixture of methacrylic acid and methanol.



Catalyst


MTBE(Methyl tertiary butyl ether) Catalyst

MTBE (Methyl tertiary butyl ether) is an ether compound containing oxygen in its molecular structure and is widely used as an octane number improver in gasoline. Cracking MTBE can produce high-purity isobutene, which is a raw material of MMA. Isobutene and methanol can be produced b selectively catalyzing the reaction with an ion exchange resin.

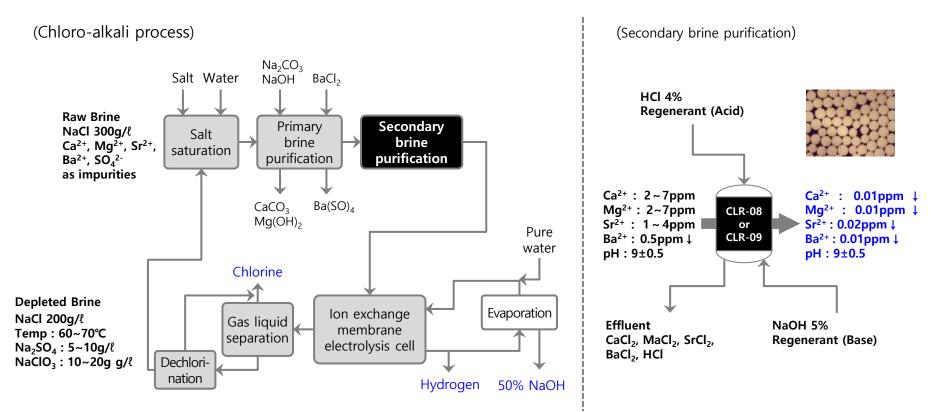
MA(Methyl acetate) Hydrolysis Catalyst

When producing terephthalic acid(TPA), a raw material for polyester fiber, methyl acetate is produced as a by-product, which is converted to acetic acid and methanol by the MA hydrolysis process, and acetic acid is reused in the process and methanol is used as boiler fuel.

Types, characteristics and application of chelating resins

The chelating resins selectively remove or separtes specific ions through chelate bonding with metal ions not through ion exchange but forming chelate. Chelating resins with various exchangers are used in a wide range of uses by type, and their features are as follows.

Functional group	Grade	lonic form	TEC (eq∕ℓ)	Remarks	Application	Equivalent
Iminodiacetate	CLR-08 (Gaussian) CLR-08UPS (UPS)	Na	Cu ²⁺ 0.5 ↑ Ca ²⁺ 0.4 ↑	Great selectivity to multivalent ion (Ca ²⁺ , Mg ²⁺ , Sr ²⁺ , etc) among the highly concentrated monovalent ions (Na ⁺ , etc) Minimized leakage of multivalent ions	 Secondary brine purification Selective removal of divalent ions among monovalent ions Removal of heavy metals in wastewater Rare metal recovery 	Lewatit TP208 Amberlite IRC748 Diaion CR11 Purolite S930
Aminomethyl phosphonate	CLR-09 (Gaussian) CLR-09UPS (UPS)	Na	Ca ²⁺ 0.6↑	Slightly greater operating capacity and slightly more leakage of multivalent ions than CLR-08	 Secondary brine purification Selective removal of divalent ions among monovalent ions 	Lewatit TP260 Amberlite IRC747 Purolite S940
Thiouronium	CLR-10	н	1.1 ↑	Great selectivity for mercury(Hg) and low adsorption rate and capacity to other heavy metals	Mercury removal from wastewater	Purolite S924
Polyamine	CLR-20	ОН	4mol as copper ↑	Excellent selectivity for heavy metals and alkali metal ions(Na ⁺ , K ⁺ , etc) and alkali earth metals(Ca ²⁺ , Mg ²⁺ ,etc) are not adsorbed.	 Separation of heavy metals among alkali metal ions and alkaline earth metal ions 	Diaion CR20
Glucamine	CLR-B3	Free base	0.6eq/ł as boron ↑	High selectivity for boron, even in presence of high concentration of anions other than boron.	• Removal of boron from wastewater	Diaion CRB03 Amberlite IRA743 Purolite S108
Aminophosphon ate	CLR-F	AI	11g as fluorine ↑	Fluorine(F) ions can be selectively adsorbed and removed to a low concentration	 Fluoride removal in desulfurization wastewater 	
Triethylamine	CLR-N	CI	1.0 ↑	Removes nitrates more selectively than anion exchange resins.	• Selective removal of nitrate	Amberlite IRA996 Purolite A520E

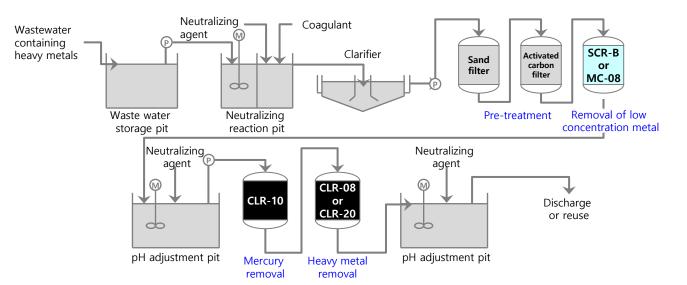


Secondary brine purification

In the chlor-alkali process that electrolyzes salt(NaCl) to produce caustic soda(NaOH) and chlorine (Cl₂), the hardness components (Ca, Mg) in the concentrated salt water should be removed to protect ion exchange membrane electrolysis cell and the process stability. TRILITE CLR-08, CLR-09 can selectively remove hardness components efficiently in the presence of high concentration of Na ions. The adsorbed hardness component is first regenerated with HCl and desorbed, and then regenerated with NaOH and converted into Na-type for re-use.

TRILITE CLR-08 is recommended when Sr and Ba ions are strictly managed, and CLR-09, which feature larger exchange capacity than CLR-08, is recommended when Ca, Mg ions are more strictly managed, thus required for more economical operation.

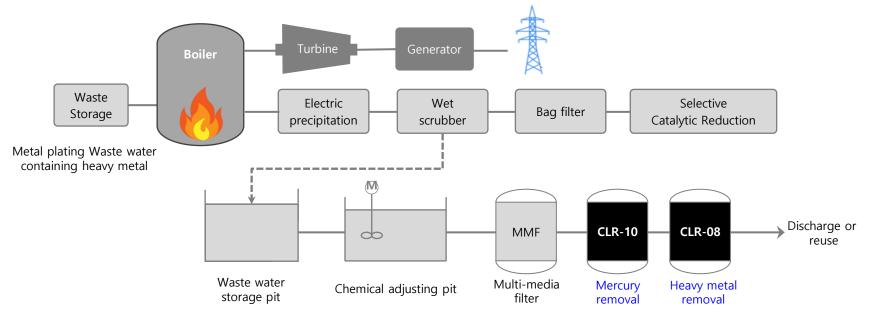
TRILITE CLR-08 and CLR-09 have been supplied to domestic and abroad caustic soda plants and well acknowledged with quality. These resins are available in both non-uniform and UPS grades.



In the plating process, various metals including heavy metals (zinc, copper, chromium, nickel, cadmium, gold, silver, etc.) are discharged into wastewater. A general plating process consists of performing a pretremment such as degreasing and acid pickling on the surface of the metal to be plated in the preparation step, and then electroplating in a plating solution. After plating, the solution contaminated with the plating material is collected in a recovery tank, and then the plating material is washed with a large amount of water. Since harmful substances are contained in this cleaning wastewater, it is treated with ion exchange resin by dividing it by system according to its properties along with other process cleaning wastewater.

In the case of ion exchange resins or chelate resins, appropriate pretreatment(neutralization, aggregation, sand filter, activated carbon, etc) is essential because the amount of ions that can be exchanged is limited and is vulnerable to the inflow of nonionic substances such as organic substances. A typical process is as follows.

- Case1) To target only heavy metals : SAC(TRILITE SCR-B, MC-08, etc.) is used to remove-low concentration alkali metals and alkaline earth metals (Ca, Sr, etc.), and chelate resins are used for specific heavy metal concentrations. In the presence of mercury, CLR-10, and for general heavy metals, CLR-08, and CLR-20 are recommended.
- Case2) Low pH, containing free acids : Case1) is applicable after removing free acids by SBA(TRILITE SAR-10, MA-12 etc.) Pretreatment with SBA is not required when pH is 4 or higher.
- Case3) Containing both metal and free acid present in the form complex anion : Strongly basic anion exchange resins (TRILITE SAR-10, MA-12, ETC.) are recommended.

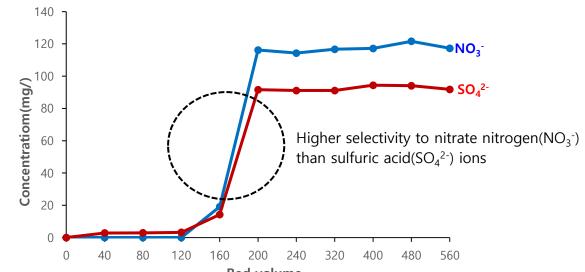


General process of resource recovery facility

Various heavy metals including mercury may be detected in leachate after incineration in waste incineration plants. In this case, if appropriate pretreatment (neutralization, coagulation, precipitation, sand filter, activated carbon, etc.) is performed and chelating resin is used, the quality of the effluent water can be efficiently managed.

TRILITE CLR-10 can remove mercury efficiently, and TRILITE CLR-08 is used for general heavy metal removal.

Below is an example of the use of chelating resins in general resource recover facilities.



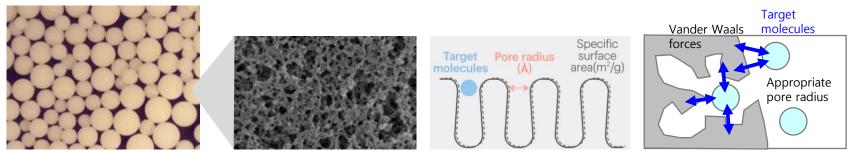
Selective removal of nitrates from drinking water

Nitrate in drinking water is known to be lethal to infants under 6months and should be removed at concentrations above 10ppm. Recently, as a result of stamping outs of animals due to AI and foot-and-mouth disease in Korea, cases of nitrate nitrogen in groundwater are increasing. The allowable limit of nitrate nitrogen as drinking water is less than 10ppm(10mg NO₃⁻ - N/ ℓ).

A general strong base anion exchange resin exhibits greater selectively to sulfuric acid (SO_4^{2-}) ions than to nitrate nitrogen (Nitrate, NO_3^{-}). For this reason, there was not much need of the nitrate removal resin when the concentration of sulfate ion is relatively lower compared to nitrate nitrogen. But, if it is high, there may be problems such as a decrease in the operating capacity of nitrate nitrogen and sometimes leakage beyond the breakthrough point.

TRILITE CLR-N can efficiently remove nitrate nitrogen from drinking water by adopting a specialized functional group with high selectively of nitrates.

When the value of SO_4^{2-} / NO_3^{-} is great than 1, that is, when the concertation of NO_3^{-} is relatively lower than that of SO_4^{2-} TRILITE CLR-N, which has high selectivity for nitrate nitrogen is recommended.

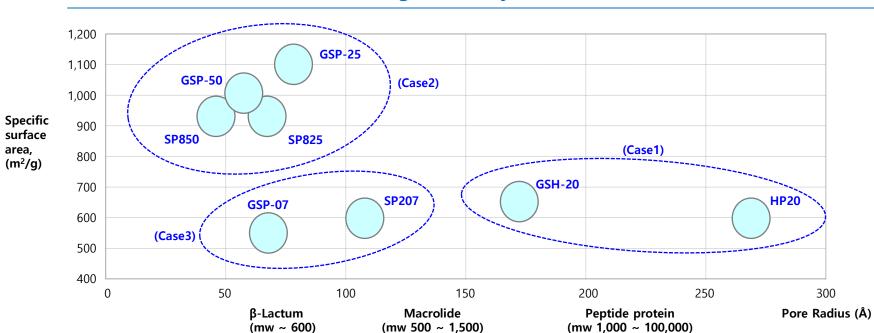

Туре	Regeneration level (Co-current, 100% NaCl base)	TRILITE CLR-N Operating capacity
SO ₄ ²⁻ / NO ₃ ⁻ > 1	125g/ { -R	0.4eq/ <i>l</i> -R (20g as CaCO ₃ / <i>l</i> -R)

Synthetic Adsorbents

Types of synthetic adsorbents

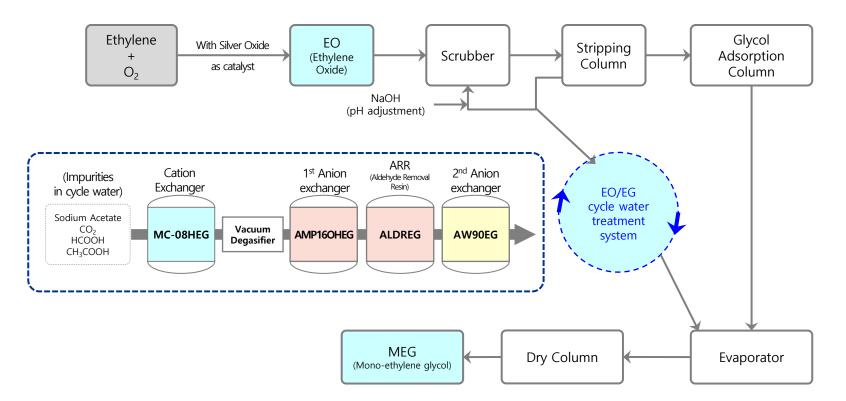
Synthetic adsorbents do not have functional group, but feature large specific surface areas and pores, so they can adsorb various organic substances by Vander Waals force. It is used for various proposes such as purification of pharmaceuticals and semiconductor chemicals.

Ty	уре		Grade	Remarks
	Standard turna	Performance	HP20	Feature relatively large pore radius, hence appropriate for adsorption of large
	Standard type	Basic	GSH-20	molecules(>1,000mw). Easily elutes and separates the target material.
Polystyrene	Special type	Performance	SP825, SP850	Feature very large surface area and small pore radius, hence appropriate for adsorption of small
type	special type	Basic	GSP-25, GSP-50	molecules(<1,000mw) and exclusion of large molecules.
	Chemically	Performance	SP207	By charging into bromine, the hydrophobicity is very high and the selectivity to non-polar materials is very high. Due to the strong adsorption strength,
	modified	Basic	GSP-07	large amount of eluent may be required, and the large specific gravity can treat a dense solution.
Methacrylic type		Performance	HP2MG	The methacrylic matrix feature high hydrophobicity and is suitable for adsorption of highly polar organic substances.


Synthetic Adsorbents

				Sy	nthetic ad	sorbents						
삼양 트	TRILITE 삼양 트리라이트 Ion Exchange Resin Gra		ade	Chemical Structure	Specific surface Area (m²/g)	Pore volume (mℓ/g)	Pore radius (Å)	Particle Distributi on (mm)	Application			
	Standard	Performance	HP20		590	1.3	290	0.2~1.2	Separation/purification/ bleaching of proteins,			
	type	Basic	GSH-20		600	1.0~1.5	100	0.315~1.25	antibiotics, food, etc.			
		Performance	SP825	- CH ₂ - CH - CH ₂ - CH -	930	1.4	70	0.2~1.2				
Poly-			SP850	CH ₂ - CH -	930	1.1	45	0.25~0.85	Cephalosporin-C adsorption,			
styrene	type	type	Basic	GSP-25		1,100	1.2~1.6	80	0.25~0.7	separation/purification of antibiotics		
			GSP-50		1,100	0.9~1.1	60	0.25~0.7				
	Chemically modified				Performance	SP207	- CH ₂ - CH - CH ₂ - CH -	600	1.0	110	0.25~0.85	Chemical purification for semiconductors, removal
		Basic	GSP-07	CH ₂ - CH -	550	0.8~1.0	70	0.25~0.7	of hydrophobic organic compounds			
Met	hacrylic	Performance	HP2MGL	$\begin{array}{c} - CH_2 - \overset{CH_3}{{\leftarrow}} CH_2 - \overset{CH_3}{{\leftarrow}} CH_2 - \overset{CH_3}{{\leftarrow}} CH_2 - \\ & \overset{O}{{\leftarrow}} O \\ & \overset{O}{{\leftarrow}} O \\ & \overset{O}{{\leftarrow}} CH_2 \\ \end{array}$	570	1.3	240	0.3~1.2	Separation/purification of substances with hydrogen bonding functional groups(ester or amino group, etc.)			

Synthetic Adsorbents


Туре	Case	Guide
	Case1) Adsorption of all materials from solution containing large amount of organics(mw > tens of thousands)	Performance HP20 > SP207 > SP825 > SP850 Basic GSH-20 > GSP-07 > GSP-25 > GSP-50
Selectivity(mole cular weights)	Case2) Adsorption of material from solution with large amount of organic content(mw<1,000)	Performance SP850 SP825 HP20 SP207 Basic GSP-50 SGSP-25 SGH-20 SGP-07
	Case3) Adsorption of materials (mw <several td="" thousands)<=""><td>Performance SP207 SP850 SP825 HP20 Basic GSP-07 > GSP-50 > GSP-25 > GSH-20</td></several>	Performance SP207 SP850 SP825 HP20 Basic GSP-07 > GSP-50 > GSP-25 > GSH-20
Elution	Elution rate tends to decrease with mall radius and large adsorption force.	Performance HP20 > SP825 > SP850 > SP207 Basic GSH-20 > GSP-25 > GSP-50 > GSP-07

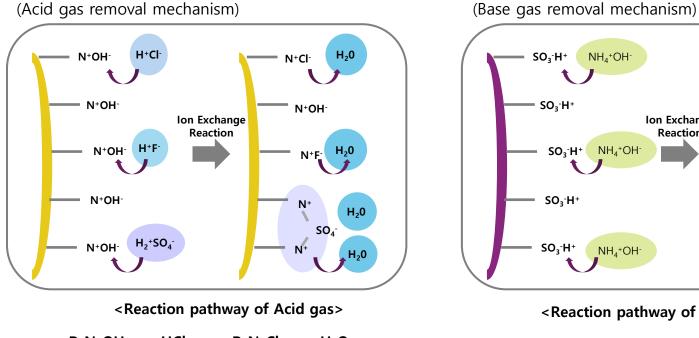
Selection guide of synthetic adsorbents

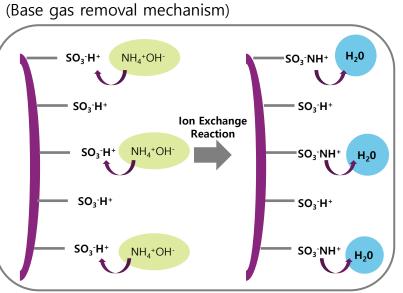
EO/EG cycle water treatment

In the production of mono-ethylene glycol, ethylene and oxygen generate EO through silver oxide catalyst, and then EG is produced by a hydrolysis reaction. In this process, impurities such as Sodium Acetate, Formaldehyde, CO₂, and Acetic Acid are included in the cycle water and removed from the EO/EG cycle water treatment system and then recycled to the process.

The main roles of each facility are as follows

Cation Exchanger : Sodium Acetate removal Vacuum Degasifier : CO₂ removal 1st Anion Exchanger : Acetic Acid removal Aldehyde removal resin : Formaldehyde removal 2nd Anion Exchanger : Bisulfate removal


Dry type resins


Dry type resins are used in gaseous chemical filters for the purpose of removing specific ions from the air. In general gaseous chemical filters remove AMC* from industrial sites where odors and harmful gases are generated. Application of dry type resin is being widely applied to improve the yield of high-precision electrical and electronic manufacturing process such as semiconductors and OLEDs.

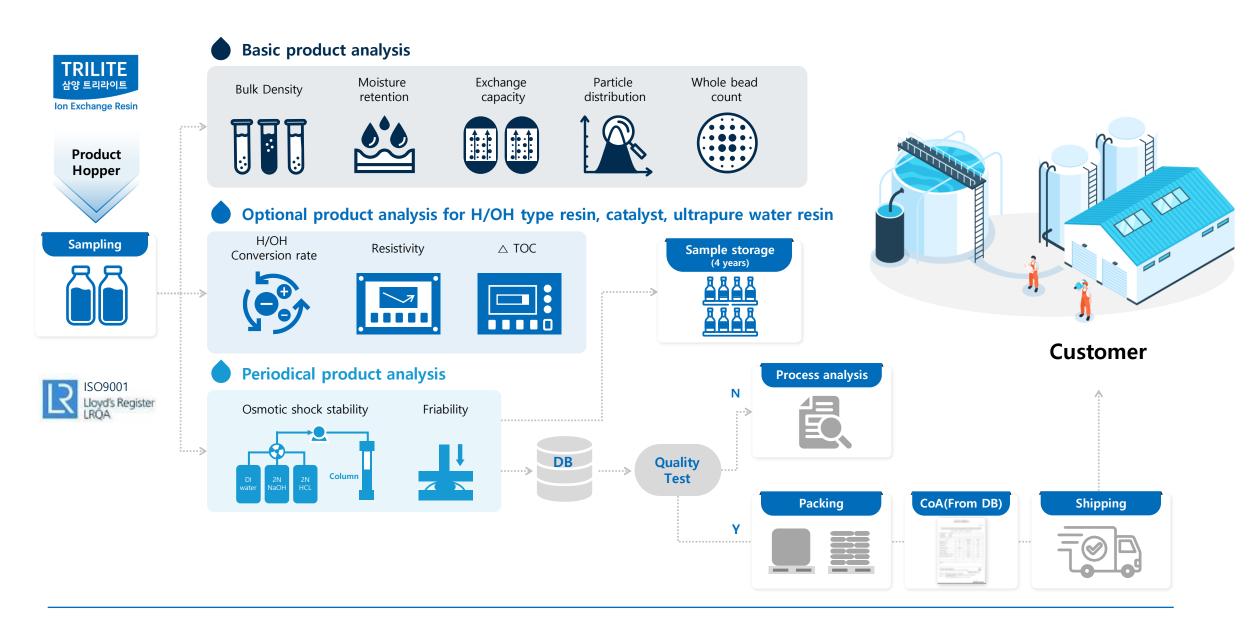
TRILITE dry type resins are supplied in the most optimized specification for various customers, to maximize the field workability and performance by supplying customized products with different ionic forms, moisture content, and particle sizes.

X AMC(Airborne molecular contamination) : Molecular substances that may adversely affect the production process or humans.

 $-R-N-OH + HCI \rightarrow -R-N-CI + H_2O$ $-R-N-OH + HF \rightarrow -R-N-F + H_2O$ $2(-R-N-OH) + H_2SO_4 \rightarrow 2(-R-N-)SO_4 + 2H_2O$

<Reaction pathway of Base gas>

 $R-SO_3H + NH_4OH \rightarrow R-SO_3NH_4 + H_2O$


Dry type resins

	Dr	y type resins					
Grade	KC-08HD SCR-BHD	MC-08HD	KA-12OHD SAR10MBOHD	AMP16OHD			
Matrix		Polystyre	ene+DVB				
Functional group	Sulfon	ic acid	Type 1 (Trimetl	hylammonium)			
lonic form	Н	H-					
Total capacity (eq/ℓ)	1.7 ↑	1.8 ↑	1.0 ↑	0.8 ↑			
Total capacity (meq/g)	2.9 ↑	3.0 ↑	1.8 ↑	1.6 ↑			
Moisture retention (%)		10~35 (Customizable upon request)					
Shipping weight, (g/l) (Reference)	780	800	750	650			
Uniformity coefficient	1.6 ↓	1.1 ↓	1.6 ↓	1.6 ↓			

Product analysis / Quality control

Quality assurance system

We carry out strict quality control and conduct continuous audits from reputable quality organizations, ISO9001, Halal Certification for export to Islamic countries and VERITAS certification for power generation industries.

Packing type

25ℓ	1,000ℓ	50l/200l	5ft ³ /7ft ³	5ℓ
PE bag	Ton bag	Plastic drum	Fiber drum	Vacuum packing
Heat-sealing type valve type	value type Square type			

Packaging type & Pallet information

			Weight	Capacity	Standard pa	letization
Туре	Material	Dimension(cm)	(kg)	(LT)	Quantity (Method)	Dimension (W x L x H, m)
25 ⁽ PE bag (Heat-sealing)	PE	48 x 71 x 10	130(g)	25	1000L (4bagX10layers or 5bagX8layers)	1.1 x 1.1 x 1.2 1.1 x 1.1 x 1.0
25{ PE bag (Valve)	PE	45 x 54 x 13	130(g)	25	1050L (6bagX7layers)	1.1 x 1.1 x 1.0
1000 [®] Round type	PP(Inner PE)	Ø107 × 121(H)	3.5	800~1000	1000L	1.1 x 1.1 x 1.2
1000 ¹ Causas have		104 x 104 x 100(H)	3.4	800~1000	1000L	1.1 x 1.1 x 1.1
1000 [®] Square type	PP(Inner PE)	104 x 104 x 120(H)	3.5	1,100	1100L	1.1 x 1.1 x 1.2
50 ^ℓ Plastic drum	HDPE	Ø41.5 × 61.5(H)	3.8	50~60	800L (8 drum X 2layers)	1.1 x 1.1 x 1.5
200 [®] Plastic drum	HDPE	Ø58.5 × 97.5(H)	10.3	200	800L (4 drum X 1layers)	1.1 x 1.1 x 1.1
5ft3 Fiber drum	Liner	Ø53 × 76(H)	7.4	5 ft3 (141ℓ)	20 ft3 (566 <i>l</i>) (4drum X 1layers)	1.1 x 1.1 x 0.9
7ft3 Fiber drum	Liner	Ø53 × 100(H)	8.5	7 ft3 (198 <i>l</i>)	28 ft3 (792 <i>l</i>) (4drum X 1layers)	1.1 x 1.1 x 1.2
5 ^ℓ Vacuum packing	NY + PET + LLDPE	480 x 280 x 0.15(mm)	39.6(g)	5	500 ℓ 20box(5ℓ X 5ea)	1.1 x 1.1 x 1.3

Cross reference guide

(Uniform	ity Coefficient	$1.1\downarrow$) technology	y in the world"		2)Dow, (3)Lanxes	<u>55</u>
	Туре	Samyang TRILITE	Mitsubishi DIAION	Dupont Amberlite/Ambertec	Lanxess Lewatit	Purolite
		UC 1.1↓	UC 1.1↓	UC 1.1↓	UC 1.1↓	UC 1.2↓
		MC-08	UBK08	HPR1100/1200 Na	MP \$100	PFC/PPC100
		MC-08H	UBK08H	HPR1200 H	MP \$100H	PFC/PPC10 0H
	SAC	MC-10	UBK10	HPR1300 Na	MP S108	SGC-650C
		MC-10H/MC-10SH	UBK10H	HPR1300/1400/650 H	MP S108H	SGC-650C H
		MC-14(M)H		HPR1600 H		
UPS Gel	SAC (Chromatography)	MCK series	UBK500 series	Refer to Chromatograp		5
UPS Gei		MA-12	UBA120	HPR4200/4800 Cl	MP M500	PFA/PPA400
		MA-120H	UBA120OH	HPR4200/4800 OH	MP M500 OH	PFA/PPA400 OH
000000	SBA_Type 1	MA-10	UBA100	HPR4700/550 Cl	MP M800	SGC-550A
00000	зва_туре т	MA-100H/MA-10SOH	UBA100OH	HPR4700/550 OH	MP M800OH	SGC-550A OH
		MA-15	UBA150	HPR4700/550 Cl	MP M800	SGC-550A
		MA-150H	UBA150OH	HPR4700/550 OH	MP M800OH	SGC-550A OH
	SBA_Type 2	MA-20	UBA200	HPR4100 CI	MP M600	PFA/PPA200
		UPRM100U			NM60	UCW 3600
	Mixed Bed (UPW)	UPRM200U		UP6150, MR-450 UPW	1292MD, NM60SG	UCW 3700
	, , , , , , , , , , , , , , , , , , ,	UPRM300U		UP6040, MR-300 UPW	1294MD	UCW 9966
UPS Porous	WBA	AW80/AW90		HPR9500	MP64/MP68	
		UC 1.6↓	UC 1.6↓		UC 1.6~1.8↓	
	SAC	SCR-B(KC-08)	SK1B	HCR-S, IRC120 Na	C249/C267	C100
Gaussian Gel	SAC_Food grade	KH-70/KH-80		HCR-S/S, SR1L		C100E
Gaussian Gei		SAR10(KA-10)	SA10		ASB1	A400
XXXX	CDA	SAR11(KA-11)	SA11			
2000	SBA	SAR12(KA-12)	SA12	IRA402 CI		A600
TAA		SAR20(KA-20)	SA20	IRA410 CI	ASB1	A200
	Mixed Bed	SM200/210/300		MB20/MB9L	NM91	MB400
	SAC	CMP/SPC Series	PK series		SP120	C150, C160
aussian Porous	SBA	AMP Series	PA series	IRA900/910 Cl	MP500	A500
	SBA(Food, Styrene)	AMP14(L)	PA308	FPA90/FPA900	S6368	A502PS
	SBA(Food, Acryl)	ASP10		FPA98	S5528	A860S
CO-C	WAC	WCA10L	WK40/WK60L	IRC83	CNP80	C105
ALC: C	WBA	AW30	WA30	IRA96	MP62	A100
	Chelating	CLR series	CR series		TP207/208	S930Plus
Ine	ert resin	TR70/TR30		14i, 62i, 600i	IN42	IP1, IP4

Contact us from your mobile with messengers

• Website •

www.samyangtrilite.com

Samyang Corporation 31, Jongno 33-gil, Jongno-gu, Seoul, 03129 Korea TEL) 02-740-7732~7, FAX) 02-740-7790 www.samyangtrilite.com