

## 3.2 Parameter Comparison -- TIPS vs. NIPS

## 3.2.1 Thermally Induces Phase Separation (TIPS)

Scinor Membrane employs the most advanced thermally induces phase separation (TIPS) technology;

- Major membrane manufacturers race against each other on the research of TIPS technology, because:
  - The TIPS method, requiring high crystallinity and high purity of PVDF raw material, produce membrane fibers of high mechanical strength, stable chemical properties, improved flux and uniform pore sizes;
  - Easy-to-control and automated TIPS manufacturing guarantee high speed, high quality, high raw material efficiency, high acceptance testing passage (99.5% for Scinor, and 95% for other membrane technology);
- 2. Only a couple of manufacturers in the world have mastered the TIPS technology, because:
  - Discovery of a new diluent recipe is difficult;
  - The production line is built to a high spec, and it must use PVDF as its raw material and patented diluent;
  - The above facts result in a technical barrier of the TIPS technology;
- 3. Currently, only 3 companies in the world actually own the technology and products:
  - Asahi Kasei (Japan), Toray (Japan), Scinor use the TIPS method;
  - All other UF manufacturers adopt the non-solvent induced phase separation method (NIPS) or combined thermal induced phase separation (C-TIPS);

Scinor's high-tech products have a multitude of invention patents related to TIPS ultrafiltration membrane;

• Scinor Membrane stems from the national-level Membrane Materials Research
Center of the Department of Chemical Engineering at Tsinghua University with a





focus on R&D and industrialization. Scinor Membrane has independently developed a large number of key technologies and attained numerous invention patents (including international ones):

Core production lines are custom-made and imported from Japan. Scinor Membrane is the only company that has TIPS production lines in China;

• Currently, only Japan has the capability to manufacture TIPS spinning production line; the NIPS spinning technology can be found everywhere in China;

Scinor Membrane has been using Solvay PVDF, the world's top brand, since its establishment

• Solvay provides the best PVDF, and the price is twice that of local products

## 3.2.2 TIPS fiber features

Superior fiber strength and low breakage rate ensure filtered water quality and long-term stability

Cross-linked spongy TIPS fibers deliver strength 3 times higher than NIPS with less than
 0.25% of annual fiber breakage within warranty period

**High flux** significantly reduces operating cost

• Scinor Membrane's operating flux is 10-30% higher than that of NIPS in water reuse applications, which normally reaches 60 LMH or above

**Strong chemical and fouling resistance** accepts a wider range of water quality and renders little production decay within warranty period

- Scinor Membrane's products are able to withstand 5,000 ppm of sodium hypochlorite and 1-13 pH range; NIPS can endure 2,000 mg/L sodium hypochlorite and 1-12 pH range
- Cross-link structure enhances anti-fouling performance, the fiber can be cleaned thoroughly once clogged



## Table 3.2 TIPS vs. NIPS

| Item                      |                                                    | TIPS                                                                                                                            | NIPS                                                                          |
|---------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Manufacturing             | Raw Material                                       | Require narrow molecular weight distribution and high purity                                                                    | Low requirements of molecular weight distribution                             |
|                           | Manufacturer<br>Equipment                          | Require high accuracy                                                                                                           | Mass production, easy manufacturing                                           |
|                           | Production<br>Efficiency and<br>Reliability        | Continuous production and high stability                                                                                        | Batch production, hard-to-<br>control quality and easy to form<br>large pores |
|                           | Ingredients                                        | High requirements of molecular weight distribution, only a couple of manufacturers have proprietary ingredients and technology. | Low requirements of raw material, easy-to-get and simple ingredients          |
|                           | Process                                            | High pressure and temperature, full-process accurate control                                                                    | Temperature controlled at a certain range to dissolve raw material            |
|                           | Cost                                               | Relative high (higher purity)                                                                                                   | Low (purity less than 30%)                                                    |
| Operational<br>Conditions | Cross Section                                      | Isotropic structure and narrow pore size distribution                                                                           | Filtration layer, loss of filtration capacity abrasion                        |
|                           | Supproting<br>Structure                            | Spongy-like structure                                                                                                           | Large finger-shaped structure                                                 |
|                           | Pure Water<br>Flux                                 | >1200LMH/Bar                                                                                                                    | 200-500LMH/Bar                                                                |
|                           | NaClO<br>Tolerence                                 | 5000 ppm                                                                                                                        | 200-2000 ppm                                                                  |
|                           | CIP pH                                             | 1-13                                                                                                                            | 1-11, low tolerance for caustic conditions                                    |
| Filtrate Quality          | SDI <sub>15</sub>                                  | < 3                                                                                                                             | < 3                                                                           |
|                           | Turbidity<br>(depending on<br>the feed<br>quality) | < 0.1 NTU                                                                                                                       | < 0.1NTU                                                                      |